Chemical Industry and Engineering Progree

Previous Articles     Next Articles

Prediction model of penicillin fed-batch fermentation based on KTA-LSSVM

FENG Juan1,TANG Yongbo2,3,PENG Tao3   

  1. 1School of Life Science and Environment,Yichun University,Yichun 336000,Jiangxi,China;2School of Physical Science and Engineering,Yichun University,Yichun 336000,Jiangxi,China;3School of Information Science and Engineering,Central South University,Changsha 410083,Hunan,China
  • Online:2014-09-05 Published:2014-09-05

基于KTA-LSSVM的青霉素发酵过程预测建模

丰娟1,唐勇波2,3,彭涛3   

  1. 1宜春学院生命科学与资源环境学院,江西 宜春 336000;2宜春学院物理科学与工程技术学院, 江西 宜春 336000;3中南大学信息科学与工程学院,湖南 长沙 410083

Abstract: A new prediction method of penicillin fed-batch fermentation based on kernel target alignment (KTA) and least squares support vector machines (LSSVM) was proposed to deal with input variable selection. Firstly,input variables were selected by analyzing the factors which affected penicillin concentration,then,the KTA feature rescaling method was used to rescale input variables. Finally,the simulation data from Pensim simulation platform was used to establish the LSSVM model in the penicillin fed-batch fermentation by using chaos particle swarm optimization (CPSO) on the LSSVM parameters optimization. The root mean square error (RMSE) of the proposed method was 0.0179,whereas the RMSE of LSSVM was 0.0276,showing better prediction and generalization.

Key words: penicillin fed-batch fermentation, kernel target alignment, rescaling, least squares support vector machines, prediction

摘要: 为解决青霉素发酵过程预测建模中存在的输入变量选择问题,提出了基于核目标度量(kernel target alignment,KTA)和最小二乘支持向量机(least squares support vector machines,LSSVM)的青霉素发酵过程预测模型。首先,在分析影响青霉素产物浓度相关因素的基础上选取输入变量,采用KTA对输入变量进行尺度缩放,然后,利用Pensim仿真平台数据,采用混沌粒子群算法对LSSVM的参数寻优,建立青霉素发酵过程的KTA-LSSVM预测模型。青霉素浓度预测的KTA-LSSVM模型均方根误差为0.0179,LSSVM模型的均方根误差为0.0276,实验结果表明,本文提出的模型预测精度高,推广性能好。

关键词: 青霉素发酵过程, 核目标度量, 尺度缩放, 最小二乘向量机, 预测

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd