Chemical Industry and Engineering Progree

Previous Articles     Next Articles

Deviation of system pressure for one-component vapor-liquid phase equilibrium in turbulence

ZHANG Zhenzhen1,YAO Yuan2,LUO Huijuan1,SONG Junnan1,JIANG Xiaobo1,GUO Kai2   

  1. 1College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China;2Research Institute of Petrochemical Complex,PetroChina Co. Ltd.,Beijing 100195,China
  • Online:2013-03-05 Published:2013-03-05

湍流状态下单组分气液相平衡体系压力的变化

张珍禛1,姚 远2,罗会娟1,宋俊男1,江小波1,郭 锴1   

  1. 1北京化工大学化学工程学院,北京 100029;2中国石油天然气股份有限公司石油化工研究院,北京 100195

Abstract: Six pure liquids,namely,water,ethanol,normal propyl alcohol,isopropyl alcohol,acetic acid,and acetone,were selected to be the experimental subjects of this research. Each one-component vapor-liquid equilibrium system was placed in a customized vessel and then rotated at a constant-temperature water bath shaking table. The experiments were conducted at eight different temperatures,from 10 ℃ to 80 ℃,with 10 ℃ intervals,and fourteen different rotating speeds,from 80 r/min to 210 r/min,with 10 r/min intervals. The deviation rate of the dynamic system pressure from the thermodynamic system pressure (R) in turbulence under experimental conditions could reach a maximum of 74.20%. A correlation of R,Reynolds number,and critical temperature was fitted by using experimental data. Based on the study results,a prediction was given that the dynamic statured vapor pressure could be twice of the thermodynamic one,as long as the degree of turbulence is sufficiently high.

Key words: one-component vapor-liquid phase equilibrium, saturated vapor pressure, turbulence, reduced temperature

摘要: 以水、乙醇、正丙醇、异丙醇、乙酸和丙酮为研究目标,使纯液体与其气相在密闭容器中达到静态气液相平衡。用恒温水浴振荡床使气液相平衡体系以一定速度做回旋运动,研究流动对单组分气液相平衡体系压力变化的影响。实验共选取8个温度,从10~80 ℃每隔10 ℃选取一个;14个实验振荡速度,从80~210 r/min每隔10 r/min选取一个。在实验条件下,体系动态平衡压力与相平衡压力的偏移率(R)与实验温度和湍动程度成正比,这一数值最大可达74.20%。在实验数据的基础上,拟合出了R与雷诺数和对比温度的关联式。通过该关联式,可以预测当湍动程度足够剧烈时,液相的动态饱和蒸汽压可达静态数值的两倍以上。

关键词: 单组分气液相平衡, 饱和蒸汽压, 湍流, 对比温度

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd