Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 528-540.DOI: 10.16085/j.issn.1000-6613.2025-0766
• Resources and environmental engineering • Previous Articles
CHEN Huaijing1,2(
), LI Yanqiang1(
), WANG Dahui1(
), PENG Xiaoping1, SONG Xiaolong1
Received:2025-05-28
Revised:2025-08-09
Online:2025-11-24
Published:2025-10-25
Contact:
WANG Dahui
陈怀敬1,2(
), 李彦强1(
), 王大辉1(
), 彭小平1, 宋晓龙1
通讯作者:
王大辉
作者简介:陈怀敬(1974—),女,副教授,研究方向为资源循环利用。E-mail:120126498@qq.com基金资助:CLC Number:
CHEN Huaijing, LI Yanqiang, WANG Dahui, PENG Xiaoping, SONG Xiaolong. Chemical changes and metal recovery during sulfation roasting of spent high-nickel cathode materials[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 528-540.
陈怀敬, 李彦强, 王大辉, 彭小平, 宋晓龙. 废旧高镍正极材料酸性焙烧过程中的化学变化及金属回收[J]. 化工进展, 2025, 44(S1): 528-540.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0766
| 元素 | 质量分数/% |
|---|---|
| Li | 7.16 |
| Ni | 36.33 |
| Co | 12.16 |
| Mn | 11.34 |
| Mg | 0.005 |
| Al | 0.09 |
| 元素 | 质量分数/% |
|---|---|
| Li | 7.16 |
| Ni | 36.33 |
| Co | 12.16 |
| Mn | 11.34 |
| Mg | 0.005 |
| Al | 0.09 |
| 编号 | 反应方程式 | ΔG⊖-T |
|---|---|---|
| 式(2) | NaHSO4+H2O(g) | Δr |
| 式(3) | Na2S2O7+H2O(g) | Δr |
| 式(4) | Na2SO4+SO3(g) | Δr |
| 式(5) | 2SO2(g)+O2(g) | Δr |
| 式(6) | SO3(g)+H2O(g) | Δr |
| 式(7) | 6Li2O+7.2NiO+2.4CoO+2.4MnO+3O2(g) | |
| 式(8) | Li2O+H2O(g) | Δr |
| 式(9) | MnO+H2O(g) | Δr |
| 式(10) | NiO+H2O(g) | Δr |
| 式(11) | CoO+H2O(g) | Δr |
| 式(12) | 2LiOH+SO3(g) | Δr |
| 式(13) | Mn(OH)2+SO3(g) | Δr |
| 式(14) | Ni(OH)2+SO3(g) | Δr |
| 式(15) | Co(OH)2+SO3(g) | Δr |
| 式(16) | 2Mn2O3+O2(g) | Δr |
| 式(17) | 4Mn3O4+O2(g) | Δr |
| 式(18) | 6MnO+O2(g) | Δr |
| 式(19) | 6CoO+O2(g) | Δr |
| 式(20) | Li2O+SO3(g) | Δr |
| 式(21) | CoO+SO3(g) | Δr |
| 式(22) | NiO+SO3(g) | Δr |
| 式(23) | MnO+SO3(g) | Δr |
| 式(24) | 1/3Co3O4+SO3(g) | Δr |
| 式(25) | MnO2+SO3(g) | Δr |
| 式(26) | 1/2Mn2O3+SO3(g) | Δr |
| 式(27) | 1/3Mn3O4+SO3(g) | Δr |
| 式(28) | Li2O+SO2(g)+1/2O2(g) | Δr |
| 式(29) | CoO+SO2(g)+1/2O2(g) | Δr |
| 式(30) | MnO+SO2(g)+1/2O2(g) | Δr |
| 式(31) | NiO+SO2(g)+1/2O2(g) | Δr |
| 式(32) | Li2O+SO2(g) | Δr |
| 式(33) | CoO+H2SO4 | Δr |
| 式(34) | NiO+H2SO4 | Δr |
| 式(35) | MnO+H2SO4 | Δr |
| 式(36) | Li2O+H2SO4 | Δr |
| 编号 | 反应方程式 | ΔG⊖-T |
|---|---|---|
| 式(2) | NaHSO4+H2O(g) | Δr |
| 式(3) | Na2S2O7+H2O(g) | Δr |
| 式(4) | Na2SO4+SO3(g) | Δr |
| 式(5) | 2SO2(g)+O2(g) | Δr |
| 式(6) | SO3(g)+H2O(g) | Δr |
| 式(7) | 6Li2O+7.2NiO+2.4CoO+2.4MnO+3O2(g) | |
| 式(8) | Li2O+H2O(g) | Δr |
| 式(9) | MnO+H2O(g) | Δr |
| 式(10) | NiO+H2O(g) | Δr |
| 式(11) | CoO+H2O(g) | Δr |
| 式(12) | 2LiOH+SO3(g) | Δr |
| 式(13) | Mn(OH)2+SO3(g) | Δr |
| 式(14) | Ni(OH)2+SO3(g) | Δr |
| 式(15) | Co(OH)2+SO3(g) | Δr |
| 式(16) | 2Mn2O3+O2(g) | Δr |
| 式(17) | 4Mn3O4+O2(g) | Δr |
| 式(18) | 6MnO+O2(g) | Δr |
| 式(19) | 6CoO+O2(g) | Δr |
| 式(20) | Li2O+SO3(g) | Δr |
| 式(21) | CoO+SO3(g) | Δr |
| 式(22) | NiO+SO3(g) | Δr |
| 式(23) | MnO+SO3(g) | Δr |
| 式(24) | 1/3Co3O4+SO3(g) | Δr |
| 式(25) | MnO2+SO3(g) | Δr |
| 式(26) | 1/2Mn2O3+SO3(g) | Δr |
| 式(27) | 1/3Mn3O4+SO3(g) | Δr |
| 式(28) | Li2O+SO2(g)+1/2O2(g) | Δr |
| 式(29) | CoO+SO2(g)+1/2O2(g) | Δr |
| 式(30) | MnO+SO2(g)+1/2O2(g) | Δr |
| 式(31) | NiO+SO2(g)+1/2O2(g) | Δr |
| 式(32) | Li2O+SO2(g) | Δr |
| 式(33) | CoO+H2SO4 | Δr |
| 式(34) | NiO+H2SO4 | Δr |
| 式(35) | MnO+H2SO4 | Δr |
| 式(36) | Li2O+H2SO4 | Δr |
| [1] | VIROLAINEN Sami, FALLAH FINI Mojtaba, LAITINEN Antero, et al. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co[J]. Separation and Purification Technology, 2017, 179: 274-282. |
| [2] | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
| [3] | HUANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
| [4] | HUANG Tao, LIU Longfei, ZHANG Shuwen. Recovery of cobalt, lithium, and manganese from the cathode active materials of spent lithium-ion batteries in a bio-electro-hydrometallurgical process[J]. Hydrometallurgy, 2019, 188: 101-111. |
| [5] | NIE Xuejiao, XI Xiaotong, YANG Yang, et al. Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics[J]. Electrochimica Acta, 2019, 320: 134626. |
| [6] | WU Guozhen, CHEN Huaijing, WANG Dahui, et al. Chemistry evolution of LiFePO4-NaHSO4·H2O system during roasting and recovery of Li and Fe[J]. Journal of Alloys and Compounds, 2024, 1007: 176376. |
| [7] | LI Li, FAN Ersha, GUAN Yibiao, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
| [8] | ZHANG Xihua, CAO Hongbin, XIE Yongbing, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis[J]. Separation and Purification Technology, 2015, 150: 186-195. |
| [9] | HE Tao, DAI Junjie, DONG Yangtao, et al. Green closed-loop regeneration of ternary cathode materials from spent lithium-ion batteries through deep eutectic solvent[J]. Ionics, 2023, 29(5): 1721-1729. |
| [10] | CHI Zhexi, LI Jian, WANG Lihua, et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues[J]. Green Chemistry, 2021, 23(22): 9099-9108. |
| [11] | ZHANG Xiaodong, WANG Dahui, CHEN Huaijing, et al. Chemistry evolution of LiNi1/3Co1/3Mn1/3O2-NaHSO4·H2O system during roasting[J]. Solid State Ionics, 2019, 339: 114983. |
| [12] | ZENG Xianlai, LI Jinhui, LIU Lili. Solving spent lithium-ion battery problems in China: Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1759-1767. |
| [13] | KU Heesuk, JUNG Yeojin, Minsang JO, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-146. |
| [14] | 王昊, 霍进达, 曲国瑞, 等. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
| WANG Hao, HUO Jinda, QU Guorui, et al. Research progress of positive electrode material recycling technology for retired lithium batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. | |
| [15] | HE Lipo, SUN Shuying, SONG Xingfu, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-181. |
| [16] | MA Liwen, NIE Zuoren, XI Xiaoli, et al. Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems[J]. Hydrometallurgy, 2013, 136: 1-7. |
| [17] | MESHRAM Pratima, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427. |
| [18] | CHEN Xiangping, CHEN Yongbin, ZHOU Tao, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38: 349-356. |
| [19] | ZHUANG Luqi, SUN Conghao, ZHOU Tao, et al. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant[J]. Waste Management, 2019, 85: 175-185. |
| [20] | LIU Yenchun, LIU Minchi. Reproduction of Li battery LiNi x Mn y Co1- x- y O2 positive electrode material from the recycling of waste battery[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18189-18195. |
| [21] | ZHENG Rujuan, WANG Wenhui, DAI Yunkun, et al. A closed-loop process for recycling LiNi x Co y Mn(1- x-y)O2 from mixed cathode materials of lithium-ion batteries[J]. Green Energy & Environment, 2017, 2(1): 42-50. |
| [22] | JOULIÉ M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
| [23] | JI Guanjun, Xing OU, ZHAO Ruirui, et al. Efficient utilization of scrapped LiFePO4 battery for novel synthesis of Fe2P2O7/C as candidate anode materials[J]. Resources, Conservation and Recycling, 2021, 174: 105802. |
| [24] | LI Li, LU Jun, ZHAI Longyu, et al. A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid[J]. CSEE Journal of Power and Energy Systems, 2018, 4(2): 219-225. |
| [25] | 刘子潇, 张家靓, 杨成, 等. 热力学研究在锂离子电池回收中的应用[J]. 化工进展, 2021, 40(10): 5325-5336. |
| LIU Zixiao, ZHANG Jialiang, YANG Cheng, et al. Applications of thermodynamic research in recycling of lithium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5325-5336. | |
| [26] | ALMEIDA Jenifer Rigo, MOURA Mayra Nicoli, BARRADA Renan Vicente, et al. Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: A study to monitor and assist recycling processes[J]. Science of the Total Environment, 2019, 685: 589-595. |
| [27] | LI Li, BIAN Yifan, ZHANG Xiaoxiao, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371. |
| [28] | ZHANG Jialiang, HU Juntao, ZHANG Wenjuan, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 204: 437-446. |
| [29] | LIU Fupeng, PENG Chao, MA Quanxin, et al. Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries[J]. Separation and Purification Technology, 2021, 259: 118181. |
| [30] | HOSSAIN Rumana, KUMAR Uttam, SAHAJWALLA Veena. Selective thermal transformation of value added cobalt from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2021, 293: 126140. |
| [31] | XIAO Jiefeng, LI Jia, XU Zhenming. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy[J]. Environmental Science & Technology, 2017, 51(20): 11960-11966. |
| [32] | YANG Yue, HUANG Guoyong, XU Shengming, et al. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries[J]. Hydrometallurgy, 2016, 165: 390-396. |
| [33] | LIU Pengcheng, XIAO Li, CHEN Yifeng, et al. Recovering valuable metals from LiNi x Mn y Co1- x- y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. |
| [34] | FEI Zitong, SU Yongyou, ZHA Yunchun, et al. Selective lithium extraction of cathode materials from spent lithium-ion batteries via low-valent salt assisted roasting[J]. Chemical Engineering Journal, 2023, 464: 142534. |
| [35] | TANG Yiqi, ZHANG Beilei, XIE Hongwei, et al. Recovery and regeneration of lithium cobalt oxide from spent lithium-ion batteries through a low-temperature ammonium sulfate roasting approach[J]. Journal of Power Sources, 2020, 474: 228596. |
| [36] | DING Hongbing, SU Yang, WANG Xinlu, et al. Enhancing the cycling stability of nickel-rich oxide cathode materials through a multifunctional CeO2 coating[J]. Journal of Colloid and Interface Science, 2025, 687: 118-130. |
| [37] | 郭学益, 蔡海燕, 毛高强, 等. 富镍三元正极材料的研究进展[J]. 工程科学学报, 2025, 47(4): 697-716. |
| GUO Xueyi, CAI Haiyan, MAO Gaoqiang, et al. Research progress of Ni-rich ternary cathode materials[J]. Chinese Journal of Engineering, 2025, 47(4): 697-716. | |
| [38] | LIU Lixia, LI Xiaoqing, ZHOU Kuan, et al. Highly improved cyclic stability of high voltage LiNi0.6Co0.2Mn0.2O2/graphite pouch cells via a silicon-based electrolyte additive[J]. ACS Applied Materials & Interfaces, 2025, 17(8): 12105-12116. |
| [39] | 牛萍健, 谢天, 袁安, 等. 锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2的研究进展[J]. 功能材料, 2018, 49(12): 12007-12016. |
| NIU Pingjian, XIE Tian, YUAN An, et al. Research progress of the LiNi0.6Co0.2Mn0.2O2 as a cathode material of lithium ion batteries[J]. Journal of Functional Materials, 2018, 49(12): 12007-12016. | |
| [40] | 姚凤仪, 郭德威, 桂明德.氧 硫 硒分族[M]. 北京: 科学出版社, 1990. |
| YAO Fengyi, GUO Dewei, GUI Deming. Oxygen, Sulfur, Selenium Subgroups[M]. Beijing: Science Press, 1990. | |
| [41] | LIANG Longwei, DU Ke, LU Wei, et al. Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 613: 296-305. |
| [42] | CHEN Bo, LIU Tianhui, JIAO Huan, et al. Phase transitions and energy storage properties of some compositions in the (1-x)Li2SO4– x Na2SO4 system[J]. Phase Transitions, 2014, 87(7): 629-640. |
| [43] | TALLMAN Killian R, WHEELER Garrett P, KERN Christopher J, et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and extended cycling effects using operando X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2021, 125(1): 58-73. |
| [44] | YUE Peng, WANG Zhixing, GUO Huajun, et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2- z F z cathode materials[J]. Electrochimica Acta, 2013, 92: 1-8. |
| [45] | SOHN Jong Rack. Correlation between acidic properties of nickel catalysts and catalytic activities for ethylene dimerization and butene isomerization[J]. Catalysis Surveys from Asia, 2004, 8(4): 249-263. |
| [46] | PARK Sanghyuk, KIM Duho, KU Heesuk, et al. The effect of Fe as an impurity element for sustainable resynthesis of Li [Ni1/3Co1/3Mn1/3]O2 cathode material from spent lithium-ion batteries[J]. Electrochimica Acta, 2019, 296: 814-822. |
| [47] | OKAZAKI Noriyasu, OSADA Seiji, TADA Akio. Deactivation by sulfur dioxide of alumina-based catalysts for selective catalytic reduction of nitrogen monoxide by ethene[J]. Applied Surface Science, 1997, 121/122: 396-399. |
| [48] | Katana NGALA J, CHERNOVA Natasha A, MA Miaomiao, et al. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound[J]. Journal of Materials Chemistry, 2004, 14(2): 214-220. |
| [49] | MAO Jiakai, LI Jia, XU Zhengming. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-929. |
| [1] | HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, WANG Xin, WANG Chunxia, XU Shengming, HUANG Guoyong. Research on disposal methods of spent vanadium-titanium-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324. |
| [2] | CHEN Qingyun,WANG Yunhai. Cathodic function of microbial fuel cells:A review [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2352-2360. |
| [3] | ZHANG Haiyan,ZHANG Angui. Progress in emulsion liquid membrane technique [J]. Chemical Industry and Engineering Progree, 2007, 26(2): 180-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |