Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4772-4784.DOI: 10.16085/j.issn.1000-6613.2025-0551

• Process systems modeling and simulation • Previous Articles    

Dynamic source localization model based on CFD simulated artificial neural network

SHI Tianle1,2(), LI Fei2,3(), CHEN Sheng4(), LU Chunxi1, WANG Wei2,3   

  1. 1.College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
    2.State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Technology Innovation Center of Risk Prevention and Control of Refining and Chemical Equipment,State Administration for Market Regulation,China Special Equipment Inspection and Research Institute, Beijing 100029, China
  • Received:2025-04-14 Revised:2025-06-25 Online:2025-09-08 Published:2025-08-25
  • Contact: LI Fei, CHEN Sheng

基于CFD模拟的人工神经网络动态溯源模型

史天乐1,2(), 李飞2,3(), 陈昇4(), 卢春喜1, 王维2,3   

  1. 1.中国石油大学(北京)化学工程与环境学院,北京 102249
    2.中国科学院过程工程研究所介科学与工程国家重点实验室,北京 100190
    3.中国科学院大学化学工程学院,北京 100049
    4.国家市场监督管理总局技术创新中心 (炼油与化工装备风险防控),中国特种设备检测研究院,北京 100029
  • 通讯作者: 李飞,陈昇
  • 作者简介:史天乐(2000—),硕士研究生,研究方向为气体泄漏仿真及机器学习。E-mail:tlshi@ipe.ac.cn
  • 基金资助:
    国家重点研发计划(2022YFC3004504);国家重点研发计划(2022YFC3902505);中国科学院先导专项(XDA0490102);国家自然科学基金(22208379);国家自然科学基金(U23A20374);国家自然科学基金(22161142006);国家自然科学基金(51876212)

Abstract:

In the early stages of hazardous gas leakage accidents, improper handling can lead to secondary incidents such as combustion and explosion. Thus it is crucial to develop a gas tracing method for rapid localization of leak source. Gas tracing and localization, an inverse problem of gas diffusion, remains challenging in scientific research and engineering applications. Artificial neural networks, integrated with tracing and localization schemes offer a promising solution for this inverse problem, enabling rapid and accurate source localization. The dynamic source localization datasets are extracted from computational fluid dynamics simulation results. A long short-term memory neural network model for real-time prediction of leakage source locations based on sensor data sequence is established and optimized. Results show that the artificial neural network-based localization model can accurately predict the leakage source, with predicted points within 20m of the actual source location, achieving an accuracy of 97.49%. After a set of sequential concentration data is input, the preliminary location of the leakage source can be predicted within 0.04737s, which is significantly faster than traditional source localization methods.

Key words: CFD, simulation, neural network, dynamic source localization model, inverse problem

摘要:

危险气体泄漏事故早期处理不当,可能会引发二次燃爆等次生灾害,因此开发一种快速泄漏源定位的气体溯源方法至关重要。气体溯源是气体扩散的逆问题,在科学研究和工程应用中仍具有挑战性,人工神经网络与溯源定位方案的结合为解决这一反问题提供了一种可行途径,有望实现快速准确的溯源定位。本文基于计算流体动力学模拟结果建立动态气体溯源数据集,搭建了基于传感器数据序列实时预测泄漏源位置的长短期记忆神经网络动态溯源模型,并对模型进行训练和优化。结果表明:基于人工神经网络的动态溯源模型成功实现了对泄漏源的准确预测,预测点与真实泄漏源位置的距离在20m以内,模型的准确率达97.49%。在输入一组序列浓度数据后,可以在0.04737s内预测泄漏源的初步位置,显著快于传统的溯源定位方法。

关键词: 计算流体力学, 模拟, 神经网络, 动态溯源定位模型, 反问题

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd