Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7034-7044.DOI: 10.16085/j.issn.1000-6613.2024-2045
• Materials science and technology • Previous Articles
LU Xueyin1(
), KANG Yutang1(
), ZHONG Zhaoxiang1,2(
), XING Weihong2
Received:2024-12-17
Revised:2025-03-07
Online:2026-01-06
Published:2025-12-25
Contact:
KANG Yutang, ZHONG Zhaoxiang
陆雪崟1(
), 康玉堂1(
), 仲兆祥1,2(
), 邢卫红2
通讯作者:
康玉堂,仲兆祥
作者简介:陆雪崟(1999—),女,硕士研究生,研究方向为多级孔碳纳米纤维催化膜的制备及其空气净化性能。E-mail: luxueyinyx@163.com。
基金资助:CLC Number:
LU Xueyin, KANG Yutang, ZHONG Zhaoxiang, XING Weihong. Nanofiber catalytic membranes for indoor particulate matter/ formaldehyde purification[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7034-7044.
陆雪崟, 康玉堂, 仲兆祥, 邢卫红. 面向室内颗粒物/甲醛净化的纳米纤维催化膜[J]. 化工进展, 2025, 44(12): 7034-7044.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2045
| 材料体系 | 过滤性能 | 催化性能 | 其他性能 |
|---|---|---|---|
| PA6/DTAC-2[ | PM0.3:99.95% | — | 持久抗菌性 |
| PAN/ZIF-67[ | PM0.3-0.4:83% | — | — |
| PAN/MCNF[ | PM2.5:99% | — | — |
| MNF@MnO2[ | PM0.3:99.47% | HCHO(室温):88.3% | — |
| MCCS-2[ | PM0.3:99.60% PM2.5:99.99% | HCHO(室温):100% | — |
| MnO2/PS[ | PM2.5:99.77% | HCHO(室温):88.2% | — |
| Pt/γ-Al2O3[ | >368nm颗粒:过滤效率较好 | HCHO(室温):100% | — |
| PAN/M. bontioides/Ag-CN/Ag[ | PM0.7-0.8:99.82% | MB:96.37% | 抗大肠杆菌:98.65%±1.49% 抗金黄色葡萄球菌:7.8%±1.27% 抗甲流病毒 |
| 材料体系 | 过滤性能 | 催化性能 | 其他性能 |
|---|---|---|---|
| PA6/DTAC-2[ | PM0.3:99.95% | — | 持久抗菌性 |
| PAN/ZIF-67[ | PM0.3-0.4:83% | — | — |
| PAN/MCNF[ | PM2.5:99% | — | — |
| MNF@MnO2[ | PM0.3:99.47% | HCHO(室温):88.3% | — |
| MCCS-2[ | PM0.3:99.60% PM2.5:99.99% | HCHO(室温):100% | — |
| MnO2/PS[ | PM2.5:99.77% | HCHO(室温):88.2% | — |
| Pt/γ-Al2O3[ | >368nm颗粒:过滤效率较好 | HCHO(室温):100% | — |
| PAN/M. bontioides/Ag-CN/Ag[ | PM0.7-0.8:99.82% | MB:96.37% | 抗大肠杆菌:98.65%±1.49% 抗金黄色葡萄球菌:7.8%±1.27% 抗甲流病毒 |
| [1] | Javier GONZÁLEZ-MARTÍN, KRAAKMAN Norbertus Johannes Richardus, Cristina PÉREZ, et al. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control[J]. Chemosphere, 2021, 262: 128376. |
| [2] | 胡旌钰, 李茹, 冯燕. 室内空气污染物分类及净化技术研究进展[J]. 当代化工, 2022, 51(2): 418-422. |
| HU Jingyu, LI Ru, FENG Yan. Research progress of indoor air pollutant classification and purification technology[J]. Contemporary Chemical Industry, 2022, 51(2): 418-422. | |
| [3] | ARDEN POPE C 3rd, BURNETT Richard T, THUN Michael J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA, 2002, 287(9): 1132-1141. |
| [4] | BROOK Robert D, RAJAGOPALAN Sanjay, ARDEN POPE C, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association[J]. Circulation, 2010, 121(21): 2331-2378. |
| [5] | 孟彩云. 我国甲醛生产现状与技术进展[J]. 化学工程与装备, 2010(9): 160-162. |
| MENG Caiyun. Present situation and technical progress of formaldehyde production in China[J]. Chemical Engineering & Equipment, 2010(9): 160-162. | |
| [6] | SALTHAMMER Tunga, MENTESE Sibel, MARUTZKY Rainer. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. |
| [7] | TANG Xiaojiang, BAI Yang, DUONG Anh, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8): 1210-1224. |
| [8] | KIM Sumin, KIM Hyun-Joong. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins[J]. Bioresource Technology, 2005, 96(13): 1457-1464. |
| [9] | ZHANG Luoping, STEINMAUS Craig, EASTMOND David A, et al. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms[J]. Mutation Research/Reviews in Mutation Research, 2009, 681(2/3): 150-168. |
| [10] | 刘俊逸, 张晓昀, 李杰, 等. 室内甲醛污染物高效治理新技术研究进展[J]. 应用化工, 2020, 49(8): 2101-2106. |
| LIU Junyi, ZHANG Xiaoyun, LI Jie, et al. Research on the new technologies of efficient indoor for maldehyde pollution control[J]. Applied Chemical Industry, 2020, 49(8): 2101-2106. | |
| [11] | LOWTHER Scott D, DENG Wei, FANG Zheng, et al. How efficiently can HEPA purifiers remove priority fine and ultrafine particles from indoor air?[J]. Environment International, 2020, 144: 106001. |
| [12] | 叶彩华. 利用活性炭吸附作用去除室内甲醛的效果分析[J]. 现代盐化工, 2022, 49(4): 33-35. |
| YE Caihua. Analysis on the effect of removing indoor formaldehyde by activated carbon adsorption[J]. Modern Salt and Chemical Industry, 2022, 49(4): 33-35. | |
| [13] | WEN Qingbo, LI Caiting, CAI Zhihong, et al. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde[J]. Bioresource Technology, 2011, 102(2): 942-947. |
| [14] | ZHANG Wanyi, DENG Shiming, ZHANG Shuang, et al. Energy consumption performance optimization of PTFE HEPA filter media during dust loading through compositing them with the efficient filter medium[J]. Sustainable Cities and Society, 2022, 78: 103657. |
| [15] | ZAATARI Marwa, NOVOSELAC Atila, SIEGEL Jeffrey. The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units[J]. Building and Environment, 2014, 73: 151-161. |
| [16] | BELLAT Jean-Pierre, BEZVERKHYY Igor, WEBER Guy, et al. Capture of formaldehyde by adsorption on nanoporous materials[J]. Journal of Hazardous Materials, 2015, 300: 711-717. |
| [17] | NIE Longhui, YU Jiaguo, JARONIEC Mietek, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catalysis Science & Technology, 2016, 6(11): 3649-3669. |
| [18] | YUSUF Abubakar, SNAPE Colin, HE Jun, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review[J]. Catalysis Reviews, 2017, 59(3): 189-233. |
| [19] | ZHANG Jianghao, LI Yaobin, WANG Lian, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313. |
| [20] | ROBINSON Andrew J, Alejandra PÉREZ-NAVA, Shan C ALI, et al. Comparative analysis of fiber alignment methods in electrospinning[J]. Matter, 2021, 4(3): 821-844. |
| [21] | LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313. |
| [22] | JI Dongxiao, LIN Yagai, GUO Xinyue, et al. Electrospinning of nanofibres[J]. Nature Reviews Methods Primers, 2024, 4: 1. |
| [23] | LI Peng, WANG Chunya, ZHANG Yingying, et al. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. |
| [24] | GONG Xiaobao, JIN Chunfeng, LIU Xiaoyan, et al. Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation[J]. Nano Letters, 2023, 23(3): 1044-1051. |
| [25] | XIA Tongling, BIAN Ye, ZHANG Li, et al. Relationship between pressure drop and face velocity for electrospun nanofiber filters[J]. Energy and Buildings, 2018, 158: 987-999. |
| [26] | LIU Chong, HSU Po-Chun, LEE Hyun-Wook, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205. |
| [27] | GAO Xue, LI Zhongkun, XUE Jian, et al. Titanium carbide Ti3C2T x (MXene) enhanced PAN nanofiber membrane for air purification[J]. Journal of Membrane Science, 2019, 586: 162-169. |
| [28] | ZHANG Peng, WAN Dongyang, ZHANG Zhenyi, et al. RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM2.5 filtration[J]. Environmental Science: Nano, 2018, 5(8): 1813-1820. |
| [29] | FAN Xin, WANG Yu, ZHENG Min, et al. Morphology engineering of protein fabrics for advanced and sustainable filtration[J]. Journal of Materials Chemistry A, 2018, 6(43): 21585-21595. |
| [30] | LI Jing, ZHANG Danzhen, YANG Tingting, et al. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5 [J]. Journal of Membrane Science, 2018, 551: 85-92. |
| [31] | ZHONG Longgang, WANG Tao, LIU Liyuan, et al. Ultra-fine SiO2 nanofilament-based PMIA: A double network membrane for efficient filtration of PM particles[J]. Separation and Purification Technology, 2018, 202: 357-364. |
| [32] | ZHANG Qijun, LI Qian, YOUNG Timothy M, et al. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8706-8714. |
| [33] | LIU Hui, ZHANG Shichao, LIU Lifang, et al. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration[J]. Advanced Functional Materials, 2019, 29(39): 1904108. |
| [34] | YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199. |
| [35] | KIM Min-Woo, AN Seongpil, SEOK Hyunjun, et al. Electrostatic transparent air filter membranes composed of metallized microfibers for particulate removal[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26323-26332. |
| [36] | LIU Hui, ZHANG Shichao, LIU Lifang, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 1909554. |
| [37] | LEE Sol, HAN Kyung Seok, KIM Minje, et al. Polybenzimidazole-benzophenone composite nanofiber window air filter with superb UV resistance and high chemical and thermal durability[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23914-23922. |
| [38] | ZHU Xiao, FENG Shasha, ZHAO Shuaifei, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification[J]. Journal of Membrane Science, 2020, 594: 117473. |
| [39] | ZHANG Lu, LI Lingfeng, WANG Lincai, et al. Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration[J]. Applied Surface Science, 2020, 515: 145962. |
| [40] | XIE Fan, WANG Yafang, ZHUO Longhai, et al. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56499-56508. |
| [41] | CHEN Mengyan, JIANG Jiayu, FENG Shasha, et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal[J]. Journal of Membrane Science, 2021, 635: 119463. |
| [42] | CHEN Jiangping, CHEN Sheng-Chieh, WU Xiaoqiong, et al. Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: Preparation, performance evaluation and mechanism insights[J]. Journal of Membrane Science, 2021, 633: 119392. |
| [43] | PAN Zhengyuan, ZHANG Xiaole, SUN Zhaoxia, et al. High fidelity simulation of ultrafine PM filtration by multiscale fibrous media characterized by a combination of X-ray CT and FIB-SEM[J]. Journal of Membrane Science, 2021, 620: 118925. |
| [44] | XU Wanlin, FU Wanlin, MENG Xiangyu, et al. One stone two birds: A sinter-resistant TiO2 nanofiber-based unbroken mat enables PM capture and in situ elimination[J]. Nanoscale, 2021, 13(48): 20564-20575. |
| [45] | LU Xin, CHEN Yingdong, YAN Wentao, et al. Amphiphobic polytetrafluoroethylene membrane with a ring-on-string-like micro/nano structure for air purification[J]. Journal of Membrane Science, 2022, 652: 120476. |
| [46] | NIU Zhuolun, XIAO Can, MO Jinhan, et al. Investigating the influence of metal-organic framework loading on the filtration performance of electrospun nanofiber air filters[J]. ACS Applied Materials & Interfaces, 2022. |
| [47] | ZHANG Shichao, LIU Hui, TANG Ning, et al. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks[J]. ACS Nano, 2019, 13(11): 13501-13512. |
| [48] | DENG Yankang, LU Tao, CUI Jiaxin, et al. Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration[J]. Separation and Purification Technology, 2022, 294: 121093. |
| [49] | YUAN Wei, ZHOU Ning, SHI Lei, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071. |
| [50] | YAN Jianhua, DONG Keqi, ZHANG Yuanyuan, et al. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity[J]. Nature Communications, 2019, 10(1): 5584. |
| [51] | LI Dan, XIA Younan. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters, 2004, 4(5): 933-938. |
| [52] | ALMASIAN A, GIAHI M, CHIZARI FARD Gh, et al. Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior[J]. Chemical Engineering Journal, 2018, 351: 1166-1178. |
| [53] | BAUER Adam Joseph-Podufaly, GRIM Zachary Buchanan, LI Bingbing. Hierarchical polymer blend fibers of high structural regularity prepared by facile solvent vapor annealing treatment[J]. Macromolecular Materials and Engineering, 2018, 303(1): 1700489. |
| [54] | DENG Yankang, LU Tao, ZHANG Xiaoli, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. |
| [55] | LIU Bowen, ZHANG Shichao, WANG Xueli, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211. |
| [56] | 杨琼琼. 多孔材料负载型催化剂催化氧化VOCs的研究进展[J]. 化工设计通讯, 2023, 49(11): 70-77. |
| YANG Qiongqiog. Research progress of supported catalysts based on porous materials for catalytic oxidation of VOCs[J]. Chemical Engineering Design Communications, 2023, 49(11): 70-77. | |
| [57] | XU Feiyan, LE Yao, CHENG Bei, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426: 333-341. |
| [58] | QIU Shi, LI Wenkai, PAN Xingchen, et al. PtCu anchored on N,S-codoped electrospinning porous carbon nanofibers for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34794-34803. |
| [59] | KANG Sangmo, HWANG Jungho. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020, 379: 122315. |
| [60] | JIANG Chunli, WANG Hao, WANG Yongqing, et al. Modifying defect states in CeO2 by Fe doping: A strategy for low-temperature catalytic oxidation of toluene with sunlight[J]. Journal of Hazardous Materials, 2020, 390: 122182. |
| [61] | CUI Yahui, JIANG Zhenlin, XU Chenxue, et al. Preparation, filtration, and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning[J]. RSC Advances, 2021, 11(32): 19579-19586. |
| [62] | HAN Daewoo, STECKL Andrew J. Coaxial electrospinning formation of complex polymer fibers and their applications[J]. ChemPlusChem, 2019, 84(10): 1453-1497. |
| [63] | MCCANN Jesse T, MARQUEZ Manuel, XIA Younan. Melt coaxial electrospinning: A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006, 6(12): 2868-2872. |
| [64] | PANT Bishweshwar, PARK Mira, PARK Soo-Jin. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review[J]. Pharmaceutics, 2019, 11(7): 305. |
| [65] | JIANG Hongliang, HU Yingqian, ZHAO Pengcheng, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, 79B(1): 50-57. |
| [66] | YU Dengguang, WEI Chian, WANG Xia, et al. Linear drug release membrane prepared by a modified coaxial electrospinning process[J]. Journal of Membrane Science, 2013, 428: 150-156. |
| [67] | ZUO Fenglei, ZHANG Shichao, LIU Hui, et al. Free-standing polyurethane nanofiber/nets air filters for effective PM capture[J]. Small, 2017, 13(46): 1702139. |
| [68] | YANG Yuchen, LI Xiangshun, ZHOU Zhiyong, et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter[J]. Nature Communications, 2024, 15(1): 1586. |
| [69] | Mihailo MIRKOVIĆ, STOJANOVIĆ Dušica B, Daniel MIJAILOVIĆ, et al. Electrospun polyacrylonitrile fibers incorporated with microporous carbon for improved airborne PM2.5 filtration[J]. Materials Chemistry and Physics, 2022, 285: 126103. |
| [70] | ZHANG Xianhua, LIANG Yuan, LIU Fan, et al. MnO2-loaded flexible mullite nanofiber filter materials for removing particulate matter and formaldehyde from indoor air[J]. Separation and Purification Technology, 2024, 343: 127135. |
| [71] | ZHOU Huixian, ZENG Yiqing, Zexian LOW, et al. Core-dual-shell structure MnO2@Co-C@SiO2 nanofiber membrane for efficient indoor air cleaning[J]. Journal of Membrane Science, 2023, 677: 121644. |
| [72] | HU Min, YIN Linghui, ZHOU Huixian, et al. Manganese dioxide-filled hierarchical porous nanofiber membrane for indoor air cleaning at room temperature[J]. Journal of Membrane Science, 2020, 605: 118094. |
| [73] | XIN Sitian, ZHU Silong, ZHENG Jianfei, et al. One-step fabrication of electrospun flexible and hierarchically porous Pt/γ-Al2O3 nanofiber membranes for HCHO and particulate removal[J]. New Journal of Chemistry, 2022, 46(36): 17429-17437. |
| [74] | CHEN Pinhong, YANG Zhi, Zhuoxian MAI, et al. Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application[J]. Separation and Purification Technology, 2022, 298: 121565. |
| [1] | WANG Lu, HE Yangdong, LI Yaxin, FAN Rui, CHENG Shijin, ZHANG Jie. Structural design and performance optimization of high-performance polymeric membranes for He/CH4 and He/N2 separation [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 261-276. |
| [2] | CHENG Qiwen, LI Qinghua, WANG Haofan, CAO Yonghai, WANG Hongjuan, YU Hao. Preparation and tribological properties of oleylamine-modified carbon coated molybdenum disulfide composites [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 400-412. |
| [3] | TAN Fangfang, CHENG An, LIU Jia, WANG Yuanbo, WANG Jun. A novel visible-light-driven method for the one-step synthesis of methyl p-methoxybenzoate from p-methoxybenzaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 434-440. |
| [4] | ZHU Ying, LI Yilin, LIU Jianguo, CAO Yingnan, HUO Yaoqiang, LIU Wei, WANG Juan, LI Yiting, ZHANG Ximei, LI Bin. Membrane fouling composition and mechanism of coking wastewater membrane treatment process [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 518-527. |
| [5] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [6] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [7] | WU Zifeng, WANG Hongjuan, WANG Haofan, CAO Yonghai, YU Hao, PENG Feng. Progress on electrosynthesis of dimethyl carbonate [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5033-5042. |
| [8] | WANG Jin, HE Xiaorui, JIANG Zhuangzhuang, FENG Yong, LIU Cheng, SHEN Xinghan. Theoretical calculations and experiments on gas permeability of proton exchange membranes for automotive fuel cells [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5202-5210. |
| [9] | YUAN Bo, GOU Jiaxuan, LI Yuzhuang, LIU Qun, XU Kun, ZHANG Yu. Carbonized ZIF-67 incorporated PDMS mixed matrix membranes on ceramic tubes for recovery of ethanol via pervaporation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5211-5223. |
| [10] | LIU Tong, QIAO Weijun, ZHAO Simeng, ZHAO Zhiping, TANG Qiong, LIU Lei, DONG Jinxiang. Synthesis of long-chain alkyl naphthalene base oil catalyzed by ionic liquids and its lubricating properties [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5277-5284. |
| [11] | WANG Rui, WANG Hailan, DAI Ruobin, WANG Zhiwei. Silicon fouling of reverse osmosis membrane for advanced treatment of industrial wastewater: Mechanisms, influencing factors and control strategies [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5315-5326. |
| [12] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [13] | YANG Shini, XU Yudong. Preparation of gypsum whisker from the gypsum sludge derived in a close-loop treatment process for leachate nanofiltration concentrate [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5450-5459. |
| [14] | WANG Hao, LI Mengqi, WANG Qingji, WANG Lingyun, LUO Zhen, SONG Quanwei, LI Xingchun, HE Xuwen. Short-process treatment technology for ex-situ remediation of groundwater in oil-contaminated sites [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5491-5502. |
| [15] | CAO Manman, GUO Yingming, CAO Yuanyuan, ZHANG Yuhong, ZHANG Zhekai. Study on the removal of bisphenol A from water by potassium ferrate-enhanced MeO x and its mechanism [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4274-4281. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |