Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 6828-6839.DOI: 10.16085/j.issn.1000-6613.2024-1996
• Energy processes and technology • Previous Articles
SUN Wenhao(
), LIU Na, TIAN Jun, LIANG Xiaoqiang, ZHANG Kun, WANG Congjie
Received:2024-12-06
Revised:2025-01-13
Online:2026-01-06
Published:2025-12-25
Contact:
SUN Wenhao
通讯作者:
孙文浩
作者简介:孙文浩(1995—),男,博士,工程师,研究方向为动力及储能电池测试评价技术。E-mail:563729367@qq.com。
基金资助:CLC Number:
SUN Wenhao, LIU Na, TIAN Jun, LIANG Xiaoqiang, ZHANG Kun, WANG Congjie. Research progress in gas generation characteristics during the thermal runaway of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6828-6839.
孙文浩, 刘娜, 田君, 梁晓嫱, 张锟, 王聪杰. 锂离子电池热失控产气特性研究进展[J]. 化工进展, 2025, 44(12): 6828-6839.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1996
| 正极材料 | 容量/Ah | SOC/% | LEL/% | 气氛 | 气体组成(体积分数)/% | 参考文献 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C4H10 | 其他C x H y | O2 | ||||||
| LFP | 23 | 100 | — | 氦气 | 36.2 | 7.4 | 25.2 | 6.4 | 15.2 | 2.4 | 1.3 | 0.7 | 1.5 | [ |
| NCM111 | 37 | 100 | — | 氦气 | 20.8 | 14.8 | 42.9 | 5.9 | 8.1 | 1.6 | 3.5 | 2.0 | 0.4 | [ |
| NCM523 | 50 | 100 | — | 氦气 | 20.2 | 21.3 | 38.0 | 7.5 | 7.1 | 1.6 | 2.4 | 1.6 | 0.3 | [ |
| NCM622 | 50 | 100 | — | 氦气 | 15.5 | 20.1 | 41.1 | 10.6 | 6.5 | 2.5 | 2.5 | 1.1 | 0.3 | [ |
| NCM811 | 53 | 100 | — | 氦气 | 16.1 | 25.7 | 34.4 | 17.4 | 1.2 | 4.0 | 0.6 | 0.4 | 0.4 | [ |
| LCO | 2.6 | 100 | — | 氮气 | 8.1 | 14.1 | 5.0 | — | — | — | — | 4.4 | — | [ |
| LCO | 2.6 | 100 | — | 空气 | 9.9 | 18.3 | 14.2 | — | — | — | — | 4.2 | — | [ |
| NCA | 3.35 | 100 | — | 氩气 | 26.1 | 44 | 17.5 | 8.9 | 2.7 | 0.9 | — | — | — | [ |
| LFP | 162 | 100 | 6 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 58 | 100 | 8.3 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM622 | 51 | 100 | 9 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM811+NCM523 | 78.5 | 100 | 11 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 40 | 50 | 14.2 | 空气 | 8.9 | 4.8 | 40.0 | 3.4 | 4.0 | 1.1 | — | 2.8 | — | [ |
| NCM523 | 40 | 75 | 11.0 | 空气 | 18.2 | 10.9 | 29.1 | 5.1 | 6.7 | 1.0 | — | 1.7 | — | [ |
| NCM523 | 40 | 100 | 10.0 | 空气 | 21.8 | 15.1 | 24.1 | 5.7 | 7.2 | 1.3 | — | 1.6 | — | [ |
| NCM523 | 40 | 115 | 9.0 | 空气 | 20.6 | 17.0 | 24.8 | 7.2 | 9.7 | 1.8 | — | 1.5 | — | [ |
| 正极材料 | 容量/Ah | SOC/% | LEL/% | 气氛 | 气体组成(体积分数)/% | 参考文献 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C4H10 | 其他C x H y | O2 | ||||||
| LFP | 23 | 100 | — | 氦气 | 36.2 | 7.4 | 25.2 | 6.4 | 15.2 | 2.4 | 1.3 | 0.7 | 1.5 | [ |
| NCM111 | 37 | 100 | — | 氦气 | 20.8 | 14.8 | 42.9 | 5.9 | 8.1 | 1.6 | 3.5 | 2.0 | 0.4 | [ |
| NCM523 | 50 | 100 | — | 氦气 | 20.2 | 21.3 | 38.0 | 7.5 | 7.1 | 1.6 | 2.4 | 1.6 | 0.3 | [ |
| NCM622 | 50 | 100 | — | 氦气 | 15.5 | 20.1 | 41.1 | 10.6 | 6.5 | 2.5 | 2.5 | 1.1 | 0.3 | [ |
| NCM811 | 53 | 100 | — | 氦气 | 16.1 | 25.7 | 34.4 | 17.4 | 1.2 | 4.0 | 0.6 | 0.4 | 0.4 | [ |
| LCO | 2.6 | 100 | — | 氮气 | 8.1 | 14.1 | 5.0 | — | — | — | — | 4.4 | — | [ |
| LCO | 2.6 | 100 | — | 空气 | 9.9 | 18.3 | 14.2 | — | — | — | — | 4.2 | — | [ |
| NCA | 3.35 | 100 | — | 氩气 | 26.1 | 44 | 17.5 | 8.9 | 2.7 | 0.9 | — | — | — | [ |
| LFP | 162 | 100 | 6 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 58 | 100 | 8.3 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM622 | 51 | 100 | 9 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM811+NCM523 | 78.5 | 100 | 11 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 40 | 50 | 14.2 | 空气 | 8.9 | 4.8 | 40.0 | 3.4 | 4.0 | 1.1 | — | 2.8 | — | [ |
| NCM523 | 40 | 75 | 11.0 | 空气 | 18.2 | 10.9 | 29.1 | 5.1 | 6.7 | 1.0 | — | 1.7 | — | [ |
| NCM523 | 40 | 100 | 10.0 | 空气 | 21.8 | 15.1 | 24.1 | 5.7 | 7.2 | 1.3 | — | 1.6 | — | [ |
| NCM523 | 40 | 115 | 9.0 | 空气 | 20.6 | 17.0 | 24.8 | 7.2 | 9.7 | 1.8 | — | 1.5 | — | [ |
| [1] | WANG Weixuan, LI Chuanchang, ZENG Xiaoliang, et al. Application of polymer-based phase change materials in thermal safety management of power batteries[J]. Journal of Energy Storage, 2022, 55: 105646. |
| [2] | FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
| [3] | JIAQIANG E, XIAO Hanxu, TIAN Sicheng, et al. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion[J]. Renewable Energy, 2024, 229: 120762. |
| [4] | TIAN Jiaqiang, FAN Yuan, PAN Tianhong, et al. A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113978. |
| [5] | ZHENG Yusheng, CHE Yunhong, HU Xiaosong, et al. Thermal state monitoring of lithium-ion batteries: Progress, challenges, and opportunities[J]. Progress in Energy and Combustion Science, 2024, 100: 101120. |
| [6] | HU Guangfang, HUANG Peifeng, BAI Zhonghao, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10: 100140. |
| [7] | LIAO Zhenghai, ZHANG Shen, LI Kang, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879. |
| [8] | MALLICK Soumyoraj, GAYEN Debabrata. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems—A critical review[J]. Journal of Energy Storage, 2023, 62: 106894. |
| [9] | MCKERRACHER Rachel D, Jorge GUZMAN-GUEMEZ, WILLS Richard G A, et al. Advances in prevention of thermal runaway in lithium-ion batteries[J]. Advanced Energy and Sustainability Research, 2021, 2(5): 2000059. |
| [10] | SHAHID Seham, Martin AGELIN-CHAAB. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries[J]. Energy Conversion and Management X, 2022, 16: 100310. |
| [11] | BUGRYNIEC Peter J, RESENDIZ Erik G, NWOPHOKE Solomon M, et al. Review of gas emissions from lithium-ion battery thermal runaway failure—Considering toxic and flammable compounds[J]. Journal of Energy Storage, 2024, 87: 111288. |
| [12] | WANG Ze, ZHU Lei, LIU Jianwei, et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review[J]. Energy & Fuels, 2022, 36(12): 6038-6057. |
| [13] | WANG Xiaoxue, LI Qiutong, ZHOU Xiaoyan, et al. Monitoring thermal runaway of lithium-ion batteries by means of gas sensors[J]. Sensors and Actuators B: Chemical, 2024, 411: 135703. |
| [14] | YANG Yu, WANG Renjie, SHEN Zhaojie, et al. Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway[J]. Advances in Applied Energy, 2023, 11: 100146. |
| [15] | WANG Kuo, OUYANG Dongxu, QIAN Xinming, et al. Early warning method and fire extinguishing technology of lithium-ion battery thermal runaway: A review[J]. Energies, 2023, 16(7): 2960. |
| [16] | JAGUEMONT Joris, Fanny BARDÉ. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering, 2023, 231: 121014. |
| [17] | RANA Suraj, KUMAR Rajan, BHARJ Rabinder Singh. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal, 2023, 463: 142336. |
| [18] | ALKHEDHER Mohammad, TAHHAN Aghyad B. AL, YOUSAF Jawad, et al. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. |
| [19] | FENG Xuning, REN Dongsheng, HE Xiangming, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
| [20] | 刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(2): 703-712. |
| LIU Haodong, ZHANG Pengfei, HUANG Yuqi. Visualization and velocity field test of thermal runaway jet of ternary lithium battery[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 703-712. | |
| [21] | WANG Kuo, WU Dejian, CHANG Chongye, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. |
| [22] | QI Chuang, LIU Zhenyan, LIN Chunjing, et al. The gas production characteristics and catastrophic hazards evaluation of thermal runaway for LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries under different SOCs[J]. Journal of Energy Storage, 2024, 88: 111678. |
| [23] | BERTILSSON Simon, LARSSON Fredrik, FURLANI Maurizio, et al. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy[J]. Journal of Power Sources, 2017, 365: 446-455. |
| [24] | STURK David, ROSELL Lars, BLOMQVIST Per, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. |
| [25] | ZHANG Qingsong, LIU Tiantian, HAO Chaolong, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. |
| [26] | WAN Fu, LIU Qiang, KONG Weiping, et al. High-sensitivity lithium-ion battery thermal runaway gas detection based on fiber-enhanced Raman spectroscopy[J]. IEEE Sensors Journal, 2023, 23(7): 6849-6856. |
| [27] | ABD-EL-LATIF Abdelaziz A, SICHLER Peter, KASPER Michael, et al. Insights into thermal runaway of Li-ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis[J]. Batteries & Supercaps, 2021, 4(7): 1135-1144. |
| [28] | WEN Guodong, YUAN Shuai, DONG Zaizheng, et al. Recycling of spent lithium iron phosphate battery cathode materials: A review[J]. Journal of Cleaner Production, 2024, 474: 143625. |
| [29] | QIAN Feng, WANG Hewu, LI Minghai, et al. Thermal runaway vent gases from high-capacity energy storage LiFePO4 lithium iron[J]. Energies, 2023, 16(8): 3485. |
| [30] | WANG Shuping, SONG Laifeng, LI Changhao, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. |
| [31] | LIU Pengjie, LIU Chaoqun, YANG Kai, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. |
| [32] | LIU Pengjie, LI Yongqi, MAO Binbin, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. |
| [33] | GEHANDLER Jonatan. Road tunnel fire safety and risk: A review[J]. Fire Science Reviews, 2015, 4(1): 2. |
| [34] | MAO Binbin, LIU Chaoqun, YANG Kai, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. |
| [35] | LIN Chunjing, YAN Hongtao, QI Chuang, et al. Thermal runaway and gas production characteristics of semi-solid electrolyte and liquid electrolyte lithium-Ion batteries: A comparative study[J]. Process Safety and Environmental Protection, 2024, 189: 577-586. |
| [36] | WU Qian, ZHANG Bing, LU Yingying. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308. |
| [37] | ZHANG Qingsong, NIU Jianghao, ZHAO Ziheng, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. |
| [38] | LARSSON Fredrik, BERTILSSON Simon, FURLANI Maurizio, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. |
| [39] | YANG Yun, WANG Zhirong, GUO Pinkun, et al. Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model[J]. Journal of Energy Storage, 2021, 33: 101863. |
| [40] | LIU Weizhe, ZHENG Zhiqiang, ZHANG Yukun, et al. Regeneration of LiNi x Co y Mn z O2 cathode materials from spent lithium-ion batteries: A review[J]. Journal of Alloys and Compounds, 2023, 963: 171130. |
| [41] | LI Yawen, JIANG Lihua, HUANG Zonghou, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2023, 59(3): 1137-1155. |
| [42] | MAO Binbin, FEAR Conner, CHEN Haodong, et al. Experimental and modeling investigation on the gas generation dynamics of lithium-ion batteries during thermal runaway[J]. eTransportation, 2023, 15: 100212. |
| [43] | JIA Zhuangzhuang, QIN Peng, LI Zheng, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302. |
| [44] | PENG Yong, WANG Huaibin, JIN Changyong, et al. Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack[J]. Journal of Energy Storage, 2023, 72: 108324. |
| [45] | WEI Gang, HUANG Ranjun, ZHANG Guangxu, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651. |
| [46] | XU Lejun, WANG Shilin, LI Yitong, et al. Thermal runaway propagation behavior and gas production characteristics of NCM622 battery modules at different state of charge[J]. Process Safety and Environmental Protection, 2024, 185: 267-276. |
| [47] | ZHANG Ying, WANG Hong, YU Hang, et al. Influence of cathode materials on the characteristics of lithium-ion battery gas generation during thermal runaway[J/OL]. Fire Technology, 2024. . |
| [48] | ZOU Kaiyu, HE Kun, LU Shouxiang. Venting composition and rate of large-format LiNi0.8Co0.1Mn0.1O2 pouch power battery during thermal runaway[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123133. |
| [49] | ZHANG Qingsong, NIU Jianghao, YANG Juan, et al. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway[J]. Journal of Energy Storage, 2022, 56: 106146. |
| [50] | SHI Chao, WANG Hewu, SHEN Hengjie, et al. Thermal runaway characteristics and gas analysis of LiNi0.9Co0.05Mn0.05O2 batteries[J]. Batteries, 2024, 10(3): 84. |
| [51] | YANG Xinwei, WANG Hewu, LI Minghai, et al. Experimental study on thermal runaway behavior of lithium-ion battery and analysis of combustible limit of gas production[J]. Batteries, 2022, 8(11): 250. |
| [52] | NUNES DE OLIVEIRA LIMA Anastássia Mariáh, ESPINOSA Denise Crocce Romano, BOTELHO JUNIOR Amilton Barbosa, et al. NCA-type lithium-ion battery: A review of separation and purification technologies for recycling metals[J]. Journal of Sustainable Metallurgy, 2024, 10(3): 1036-1050. |
| [53] | DOUGHTY Daniel H, ROTH E Peter. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2): 37. |
| [54] | GOLUBKOV Andrey W, SCHEIKL Sebastian, PLANTEU René, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186. |
| [55] | LI Weifeng, WANG Hewu, ZHANG Yajun, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775. |
| [56] | 肖忠良, 池振振, 宋刘斌, 等. 动力锂离子电池仿真模型研究进展[J]. 化工进展, 2019, 38(8): 3604-3611. |
| XIAO Zhongliang, CHI Zhenzhen, SONG Liubin, et al. Progress of the simulation model for power lithium ion battery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3604-3611. | |
| [57] | WEBER Niklas, SCHUHMANN Sebastian, Jens TÜBKE, et al. Chemical thermal runaway modeling of lithium-ion batteries for prediction of heat and gas generation[J]. Energy Technology, 2023, 11(10): 2300565. |
| [58] | WEBER Niklas, SCHUHMANN Sebastian, Robert LÖWE, et al. On the effect of gas generation on heat transfer during thermal runaway of pouch cells[J]. Energy Advances, 2024, 3(7): 1697-1709. |
| [59] | KIM Jinyong, MALLARAPU Anudeep, FINEGAN Donal P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: 229496. |
| [60] | YANG Mengjie, RONG Mingzhe, YE Yijun, et al. Comprehensive analysis of gas production for commercial LiFePO4 batteries during overcharge-thermal runaway[J]. Journal of Energy Storage, 2023, 72: 108323. |
| [61] | JIA Zhuangzhuang, WANG Shuping, QIN Peng, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. |
| [62] | GUO Qianzhen, LIU Shaoyan, ZHANG Jiabo, et al. Effects of charging rates on heat and gas generation in lithium-ion battery thermal runaway triggered by high temperature coupled with overcharge[J]. Journal of Power Sources, 2024, 600: 234237. |
| [63] | XIAO Yang, YANG Faqing, GAO Zhenhai, et al. Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales[J]. Journal of Energy Storage, 2023, 64: 107145. |
| [64] | DIAZ Fabian, WANG Yufengnan, WEYHE Reiner, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. |
| [65] | CHRISTENSEN P A, MILOJEVIC Z, WISE M S, et al. Thermal and mechanical abuse of electric vehicle pouch cell modules[J]. Applied Thermal Engineering, 2021, 189: 116623. |
| [66] | XU Chengshan, FAN Zhuwei, ZHANG Mengqi, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods[J]. Cell Reports Physical Science, 2023, 4(12): 101705. |
| [67] | SHEN Hengjie, WANG Hewu, LI Minghai, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. |
| [68] | NISAR Umair, MURALIDHARAN Nitin, ESSEHLI Rachid, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328. |
| [69] | GOPINADH Sumol V, PHANENDRA Peddinti V R L, ANOOPKUMAR V,et al. Progress, challenges, and perspectives on alloy-based anode materials for lithium ion battery: A mini-review[J]. Energy & Fuels, 2024, 38(18): 17253-17277. |
| [70] | CAO Chencheng, ZHONG Yijun, SHAO Zongping. Electrolyte engineering for safer lithium-ion batteries: A review[J]. Chinese Journal of Chemistry, 2023, 41(9): 1119-1141. |
| [71] | 王特, 蒋立, 田晓录, 等. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. |
| WANG Te, JIANG Li, TIAN Xiaolu, et al. Research progress of lithium ion batteries safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. | |
| [72] | 胡华坤, 薛文东, 蒋朋, 等. 锂离子电池安全添加剂的研究进展[J]. 化工进展, 2022, 41(10): 5441-5455. |
| HU Huakun, XUE Wendong, JIANG Peng, et al. Research progress of safety additives for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455. | |
| [73] | BAUSCH Bruno, FRANKL Sebastian, BECHER Daniel, et al. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs[J]. Journal of Energy Storage, 2023, 61: 106841. |
| [74] | WANG Huaibin, XU Hui, ZHANG Zelin, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. |
| [1] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [2] | HU Zhilin, BAI Ruibing, XIE Tianhao, ZHENG Haixin. Research progress on synthesis technology of bis(fluorosulfonyl)imide salts [J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6813-6827. |
| [3] | LI Hongyan, XIE Shuhan, ZHANG Yanru, WANG Yongjing, WANG Yonghao, LYU Yuancai, LIN Chunxiang, LI Xiaojuan. Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5207-5216. |
| [4] | LI Weijie, LU Leilei, LI Deke, WANG Chunhang, ZHANG Zuming, TAN Qiang. Lithium-ion battery disassembly and recycling technology and progress [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4601-4613. |
| [5] | SUN Yue, XING Baolin, ZHANG Yaojie, FENG Laihong, ZENG Huihui, JIANG Zhendong, XU Bing, JIA Jianbo, ZHANG Chuanxiang, CHEN Lunjian, ZHANG Yue, ZHANG Wenhao. Preparation of B-doped porous carbon nanosheets and their lithium storage performance [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3209-3220. |
| [6] | MA Wenjun, ZHANG Xu, LIU Mengshun, LIANG Zhiyuan. Research progress of novel hydrometallurgy in recycling cathode materials from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2077-2090. |
| [7] | CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534. |
| [8] | BU Xiangning, REN Xibing, TONG Zheng, NI Mengqian, NI Chao, XIE Guangyuan. Effect of power ultrasound on resource recycling and utilization of spent lithium-ion batteries: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 514-528. |
| [9] | WANG Yue, ZHENG Xiaohong, TAO Tianyi, LIU Xiuqing, LI Li, SUN Zhi. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4530-4543. |
| [10] | HU Huakun, XUE Wendong, JIANG Peng, LI Yong. Research progress of safety additives for lithium ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455. |
| [11] | MENG Dechao, MA Zifeng, LI Linsen. Mesoscale reaction heterogeneities in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4869-4881. |
| [12] | WANG Ce, WANG Guoqing, WANG Errui, WU Tianhao, YU Haijun. Synthesis and modification of lithium-ion battery cathode materials [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011. |
| [13] | WANG Te, JIANG Li, TIAN Xiaolu, FANG Binren, QU Long, LI Mingtao. Research progress of lithium ion batteries safety materials [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. |
| [14] | Yingjie ZHANG, Peichao NING, Xuan YANG, Peng DONG, Yan LIN, Qi MENG. Research progress on the recycling technology of spent ternary lithium ion battery [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2828-2840. |
| [15] | ZHANG Xiaoxiao, WANG Yangyang, LIU Yuan, WU Feng, LI Li, CHEN Renjie. Recent progress in disposal and recycling of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4026-4032. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |