Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7238-7249.DOI: 10.16085/j.issn.1000-6613.2024-1837
• Resources and environmental engineering • Previous Articles
ZHAO Hanlei1(
), FAN Zheng1(
), LI Zhixiao2, GE Xiaodong2, HU Kexian3, WAN Zhengping3, HAN Jie4
Received:2024-11-10
Revised:2025-05-26
Online:2026-01-06
Published:2025-12-25
Contact:
FAN Zheng
赵晗蕾1(
), 范峥1(
), 李志潇2, 革晓东2, 胡科先3, 万征平3, 韩洁4
通讯作者:
范峥
作者简介:赵晗蕾(2000—),男,硕士研究生,研究方向为压裂返排液处理。E-mail:22212071148@stumail.xsyu.edu.cn。
基金资助:CLC Number:
ZHAO Hanlei, FAN Zheng, LI Zhixiao, GE Xiaodong, HU Kexian, WAN Zhengping, HAN Jie. Optimization of micro-electrolysis pretreatment for fracturing flowback fluids based on improved MOGOA[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7238-7249.
赵晗蕾, 范峥, 李志潇, 革晓东, 胡科先, 万征平, 韩洁. 基于改进MOGOA的微电解预处理压裂返排液优化[J]. 化工进展, 2025, 44(12): 7238-7249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1837
| 指标 | 数值 |
|---|---|
| Ca2+/mg·L-1 | 564.52 |
| Mg2+/mg·L-1 | 157.14 |
| Cl-/mg·L-1 | 22856.96 |
| Br-/mg·L-1 | 84.56 |
| CO32-/mg·L-1 | 未检出 |
| HCO3-/mg·L-1 | 462.99 |
| 黏度/mPa·s | 7.32 |
| 指标 | 数值 |
|---|---|
| Ca2+/mg·L-1 | 564.52 |
| Mg2+/mg·L-1 | 157.14 |
| Cl-/mg·L-1 | 22856.96 |
| Br-/mg·L-1 | 84.56 |
| CO32-/mg·L-1 | 未检出 |
| HCO3-/mg·L-1 | 462.99 |
| 黏度/mPa·s | 7.32 |
| 水平编码 | 因素 | |||
|---|---|---|---|---|
| pH(A) | 曝气量(B)/L·min–1 | 微电解材料加量(C)/g·L–1 | 反应时间(D)/min | |
| -1 | 2 | 1.5 | 60 | 40 |
| 0 | 3 | 2.0 | 80 | 60 |
| 1 | 4 | 2.5 | 100 | 80 |
| 水平编码 | 因素 | |||
|---|---|---|---|---|
| pH(A) | 曝气量(B)/L·min–1 | 微电解材料加量(C)/g·L–1 | 反应时间(D)/min | |
| -1 | 2 | 1.5 | 60 | 40 |
| 0 | 3 | 2.0 | 80 | 60 |
| 1 | 4 | 2.5 | 100 | 80 |
| 序号 | pH | 曝气量/L·min–1 | 微电解材料加量/g·L–1 | 反应时间/min | COD去除率/% | 降黏率/% |
|---|---|---|---|---|---|---|
| 1 | 3 | 2 | 80 | 60 | 80.66 | 68.51 |
| 2 | 3 | 2.5 | 60 | 60 | 75.14 | 69.21 |
| 3 | 4 | 2 | 100 | 60 | 58.98 | 46.35 |
| 4 | 4 | 2 | 80 | 40 | 56.09 | 44.76 |
| 5 | 3 | 2.5 | 80 | 40 | 75.55 | 67.03 |
| 6 | 4 | 2.5 | 80 | 60 | 56.24 | 51.95 |
| 7 | 2 | 2 | 60 | 60 | 60.20 | 68.58 |
| 8 | 3 | 2 | 100 | 80 | 81.82 | 69.79 |
| 9 | 3 | 2 | 100 | 40 | 80.99 | 67.98 |
| 10 | 3 | 1.5 | 60 | 60 | 71.19 | 61.50 |
| 11 | 4 | 1.5 | 80 | 60 | 52.49 | 43.93 |
| 12 | 4 | 2 | 60 | 60 | 54.17 | 45.02 |
| 13 | 3 | 2 | 80 | 60 | 80.62 | 69.86 |
| 14 | 3 | 1.5 | 80 | 40 | 70.96 | 60.72 |
| 15 | 3 | 2.5 | 100 | 60 | 76.76 | 68.89 |
| 16 | 3 | 2.5 | 80 | 80 | 75.93 | 69.05 |
| 17 | 3 | 2 | 60 | 80 | 78.54 | 68.86 |
| 18 | 2 | 2.5 | 80 | 60 | 59.59 | 72.33 |
| 19 | 4 | 2 | 80 | 80 | 57.12 | 46.93 |
| 20 | 2 | 2 | 80 | 40 | 61.66 | 67.70 |
| 21 | 3 | 2 | 80 | 60 | 81.59 | 71.32 |
| 22 | 2 | 1.5 | 80 | 60 | 57.82 | 68.15 |
| 23 | 2 | 2 | 80 | 80 | 65.04 | 71.10 |
| 24 | 3 | 2 | 80 | 60 | 81.58 | 70.55 |
| 25 | 3 | 1.5 | 100 | 60 | 72.85 | 62.15 |
| 26 | 3 | 2 | 60 | 40 | 77.55 | 66.03 |
| 27 | 3 | 2 | 80 | 60 | 79.85 | 70.16 |
| 28 | 3 | 1.5 | 80 | 80 | 73.03 | 62.83 |
| 29 | 2 | 2 | 100 | 60 | 66.37 | 71.82 |
| 序号 | pH | 曝气量/L·min–1 | 微电解材料加量/g·L–1 | 反应时间/min | COD去除率/% | 降黏率/% |
|---|---|---|---|---|---|---|
| 1 | 3 | 2 | 80 | 60 | 80.66 | 68.51 |
| 2 | 3 | 2.5 | 60 | 60 | 75.14 | 69.21 |
| 3 | 4 | 2 | 100 | 60 | 58.98 | 46.35 |
| 4 | 4 | 2 | 80 | 40 | 56.09 | 44.76 |
| 5 | 3 | 2.5 | 80 | 40 | 75.55 | 67.03 |
| 6 | 4 | 2.5 | 80 | 60 | 56.24 | 51.95 |
| 7 | 2 | 2 | 60 | 60 | 60.20 | 68.58 |
| 8 | 3 | 2 | 100 | 80 | 81.82 | 69.79 |
| 9 | 3 | 2 | 100 | 40 | 80.99 | 67.98 |
| 10 | 3 | 1.5 | 60 | 60 | 71.19 | 61.50 |
| 11 | 4 | 1.5 | 80 | 60 | 52.49 | 43.93 |
| 12 | 4 | 2 | 60 | 60 | 54.17 | 45.02 |
| 13 | 3 | 2 | 80 | 60 | 80.62 | 69.86 |
| 14 | 3 | 1.5 | 80 | 40 | 70.96 | 60.72 |
| 15 | 3 | 2.5 | 100 | 60 | 76.76 | 68.89 |
| 16 | 3 | 2.5 | 80 | 80 | 75.93 | 69.05 |
| 17 | 3 | 2 | 60 | 80 | 78.54 | 68.86 |
| 18 | 2 | 2.5 | 80 | 60 | 59.59 | 72.33 |
| 19 | 4 | 2 | 80 | 80 | 57.12 | 46.93 |
| 20 | 2 | 2 | 80 | 40 | 61.66 | 67.70 |
| 21 | 3 | 2 | 80 | 60 | 81.59 | 71.32 |
| 22 | 2 | 1.5 | 80 | 60 | 57.82 | 68.15 |
| 23 | 2 | 2 | 80 | 80 | 65.04 | 71.10 |
| 24 | 3 | 2 | 80 | 60 | 81.58 | 70.55 |
| 25 | 3 | 1.5 | 100 | 60 | 72.85 | 62.15 |
| 26 | 3 | 2 | 60 | 40 | 77.55 | 66.03 |
| 27 | 3 | 2 | 80 | 60 | 79.85 | 70.16 |
| 28 | 3 | 1.5 | 80 | 80 | 73.03 | 62.83 |
| 29 | 2 | 2 | 100 | 60 | 66.37 | 71.82 |
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2801.6 | 14 | 200.11 | 123.36 | <0.0001 | * |
| A | 105.55 | 1 | 105.55 | 65.07 | <0.0001 | * |
| B | 36.32 | 1 | 36.32 | 22.39 | 0.0003 | * |
| C | 36.74 | 1 | 36.74 | 22.65 | 0.0003 | * |
| D | 6.29 | 1 | 6.29 | 3.88 | 0.0691 | |
| AB | 0.9716 | 1 | 0.9716 | 0.599 | 0.4518 | |
| AC | 0.4565 | 1 | 0.4565 | 0.2814 | 0.6041 | |
| AD | 1.37 | 1 | 1.37 | 0.846 | 0.3733 | |
| BC | 0.0003 | 1 | 0.0003 | 0.0002 | 0.9892 | |
| BD | 0.7085 | 1 | 0.7085 | 0.4367 | 0.5194 | |
| CD | 0.0064 | 1 | 0.0064 | 0.0039 | 0.951 | |
| A2 | 2477.92 | 1 | 2477.92 | 1527.55 | <0.0001 | * |
| B2 | 201.53 | 1 | 201.53 | 124.24 | <0.0001 | * |
| C2 | 5.82 | 1 | 5.82 | 3.59 | 0.0791 | |
| D2 | 6.25 | 1 | 6.25 | 3.85 | 0.0699 | |
| 残差 | 22.71 | 14 | 1.62 | |||
| 失拟项 | 20.53 | 10 | 2.05 | 3.76 | 0.1067 | |
| 误差 | 2.18 | 4 | 0.5458 | |||
| 总计 | 2824.31 | 28 | ||||
| 标准偏差 | 1.27 | |||||
| 平均值 | 69.67 | |||||
| 变异系数 | 1.83 | |||||
| 决定系数R2 | 0.992 | |||||
| 校正决定系数 | 0.9839 | |||||
| 预测决定系数 | 0.9569 | |||||
| 信噪比 | 33.6496 | |||||
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2801.6 | 14 | 200.11 | 123.36 | <0.0001 | * |
| A | 105.55 | 1 | 105.55 | 65.07 | <0.0001 | * |
| B | 36.32 | 1 | 36.32 | 22.39 | 0.0003 | * |
| C | 36.74 | 1 | 36.74 | 22.65 | 0.0003 | * |
| D | 6.29 | 1 | 6.29 | 3.88 | 0.0691 | |
| AB | 0.9716 | 1 | 0.9716 | 0.599 | 0.4518 | |
| AC | 0.4565 | 1 | 0.4565 | 0.2814 | 0.6041 | |
| AD | 1.37 | 1 | 1.37 | 0.846 | 0.3733 | |
| BC | 0.0003 | 1 | 0.0003 | 0.0002 | 0.9892 | |
| BD | 0.7085 | 1 | 0.7085 | 0.4367 | 0.5194 | |
| CD | 0.0064 | 1 | 0.0064 | 0.0039 | 0.951 | |
| A2 | 2477.92 | 1 | 2477.92 | 1527.55 | <0.0001 | * |
| B2 | 201.53 | 1 | 201.53 | 124.24 | <0.0001 | * |
| C2 | 5.82 | 1 | 5.82 | 3.59 | 0.0791 | |
| D2 | 6.25 | 1 | 6.25 | 3.85 | 0.0699 | |
| 残差 | 22.71 | 14 | 1.62 | |||
| 失拟项 | 20.53 | 10 | 2.05 | 3.76 | 0.1067 | |
| 误差 | 2.18 | 4 | 0.5458 | |||
| 总计 | 2824.31 | 28 | ||||
| 标准偏差 | 1.27 | |||||
| 平均值 | 69.67 | |||||
| 变异系数 | 1.83 | |||||
| 决定系数R2 | 0.992 | |||||
| 校正决定系数 | 0.9839 | |||||
| 预测决定系数 | 0.9569 | |||||
| 信噪比 | 33.6496 | |||||
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2447.6 | 14 | 174.83 | 70.61 | <0.0001 | * |
| A | 1650.57 | 1 | 1650.57 | 666.61 | <0.0001 | * |
| B | 127.97 | 1 | 127.97 | 51.68 | <0.0001 | * |
| C | 5.04 | 1 | 5.04 | 2.04 | 0.1756 | |
| D | 17.13 | 1 | 17.13 | 6.92 | 0.0198 | * |
| AB | 3.69 | 1 | 3.69 | 1.49 | 0.2421 | |
| AC | 0.9136 | 1 | 0.9136 | 0.369 | 0.5533 | |
| AD | 0.3774 | 1 | 0.3774 | 0.1524 | 0.7021 | |
| BC | 0.2364 | 1 | 0.2364 | 0.0955 | 0.7619 | |
| BD | 0.0017 | 1 | 0.0017 | 0.0007 | 0.9795 | |
| CD | 0.2642 | 1 | 0.2642 | 0.1067 | 0.7488 | |
| A² | 636.79 | 1 | 636.79 | 257.18 | <0.0001 | * |
| B² | 41.04 | 1 | 41.04 | 16.58 | 0.0011 | * |
| C² | 13.82 | 1 | 13.82 | 5.58 | 0.0332 | * |
| D² | 23.13 | 1 | 23.13 | 9.34 | 0.0085 | * |
| 残差 | 34.66 | 14 | 2.48 | |||
| 失拟项 | 30.38 | 10 | 3.04 | 2.84 | 0.1632 | |
| 误差 | 4.28 | 4 | 1.07 | |||
| 总计 | 2482.27 | 28 | ||||
| 标准偏差 | 1.57 | |||||
| 平均值 | 63.55 | |||||
| 变异系数 | 2.48 | |||||
| 决定系数 | 0.9860 | |||||
| 校正决定系数 | 0.9721 | |||||
| 预测决定系数 | 0.9268 | |||||
| 信噪比 | 26.4979 | |||||
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2447.6 | 14 | 174.83 | 70.61 | <0.0001 | * |
| A | 1650.57 | 1 | 1650.57 | 666.61 | <0.0001 | * |
| B | 127.97 | 1 | 127.97 | 51.68 | <0.0001 | * |
| C | 5.04 | 1 | 5.04 | 2.04 | 0.1756 | |
| D | 17.13 | 1 | 17.13 | 6.92 | 0.0198 | * |
| AB | 3.69 | 1 | 3.69 | 1.49 | 0.2421 | |
| AC | 0.9136 | 1 | 0.9136 | 0.369 | 0.5533 | |
| AD | 0.3774 | 1 | 0.3774 | 0.1524 | 0.7021 | |
| BC | 0.2364 | 1 | 0.2364 | 0.0955 | 0.7619 | |
| BD | 0.0017 | 1 | 0.0017 | 0.0007 | 0.9795 | |
| CD | 0.2642 | 1 | 0.2642 | 0.1067 | 0.7488 | |
| A² | 636.79 | 1 | 636.79 | 257.18 | <0.0001 | * |
| B² | 41.04 | 1 | 41.04 | 16.58 | 0.0011 | * |
| C² | 13.82 | 1 | 13.82 | 5.58 | 0.0332 | * |
| D² | 23.13 | 1 | 23.13 | 9.34 | 0.0085 | * |
| 残差 | 34.66 | 14 | 2.48 | |||
| 失拟项 | 30.38 | 10 | 3.04 | 2.84 | 0.1632 | |
| 误差 | 4.28 | 4 | 1.07 | |||
| 总计 | 2482.27 | 28 | ||||
| 标准偏差 | 1.57 | |||||
| 平均值 | 63.55 | |||||
| 变异系数 | 2.48 | |||||
| 决定系数 | 0.9860 | |||||
| 校正决定系数 | 0.9721 | |||||
| 预测决定系数 | 0.9268 | |||||
| 信噪比 | 26.4979 | |||||
| 参数 | 数值 | |
|---|---|---|
| 初始pH | 2.3 | |
| 曝气量/L·min–1 | 2.3 | |
| 微电解材料加量/g·L–1 | 76 | |
| 反应时间/min | 73 | |
| COD去除率 | ||
| 预测值/% | 67.08 | |
| 实验值/% | 65.92 | |
| 误差/% | 1.73 | |
| 降黏率 | ||
| 预测值/% | 57.37 | |
| 实验值/% | 56.42 | |
| 误差/% | 1.66 | |
| 参数 | 数值 | |
|---|---|---|
| 初始pH | 2.3 | |
| 曝气量/L·min–1 | 2.3 | |
| 微电解材料加量/g·L–1 | 76 | |
| 反应时间/min | 73 | |
| COD去除率 | ||
| 预测值/% | 67.08 | |
| 实验值/% | 65.92 | |
| 误差/% | 1.73 | |
| 降黏率 | ||
| 预测值/% | 57.37 | |
| 实验值/% | 56.42 | |
| 误差/% | 1.66 | |
| [24] | FAN Zheng, TIAN Runzhi, LIN Liang, et al. Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3107-3118. |
| [25] | 仉洁, 王旭东, 杨逸飞, 等. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
| ZHANG Jie, WANG Xudong, YANG Yifei, et al. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. | |
| [26] | 赵云天, 范峥, 李岩, 等. 利用响应面法优化废弃钻井液破胶[J]. 化学工程, 2024, 52(6): 89-94. |
| ZHAO Yuntian, FAN Zheng, LI Yan, et al. Optimization of glue breaking in waste drilling fluid using response surface methodology[J]. Chemical Engineering (China), 2024, 52(6): 89-94. | |
| [27] | YAN Zichun, XIE Shilong, YANG Mingxia. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater[J]. Environmental Science and Pollution Research International, 2024, 31(8): 11886-11897. |
| [28] | LI Xiang, ZHANG Jiajia, QIN Yang, et al. Enhanced removal of organic contaminants by novel iron–carbon and premagnetization: Performance and enhancement mechanism[J]. Chemosphere, 2022, 303: 135060. |
| [29] | HAN Yanhe, LI Han, LIU Meili, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247. |
| [30] | 刘奕杰, 马海涛, 郑文华, 等. 规整化铁碳材料的制备及降解高浓度苯酚的研究[J]. 水处理技术, 2024, 50(3): 53-58. |
| LIU Yijie, MA Haitao, ZHENG Wenhua, et al. Preparation of iron-carbon micro-electrolysis materials with normalization and its performance for degradation of phenol[J]. Technology of Water Treatment, 2024, 50(3): 53-58. | |
| [31] | 杨仁俊, 张伟, 赫瑞元, 等. 酸析-微电解法预处理对甲砜基甲苯生产废水[J]. 应用化工, 2021, 50(S1): 417-419. |
| YANG Renjun, ZHANG Wei, HE Ruiyuan, et al. Pretreatment of wastewater from p-methylsulfonyltoluene production by acid precipitation-micro-electrolysis[J]. Applied Chemical Industry, 2021, 50(S1): 417-419. | |
| [32] | 张东升, 余丽胜, 焦纬洲, 等. 基于响应面法的超声强化铁碳微电解处理硝基苯废水工艺优化研究[J]. 含能材料, 2018, 26(2): 178-184. |
| ZHANG Dongsheng, YU Lisheng, JIAO Weizhou, et al. Treatment of nitrobenzene wastewater via ultrasonic enhanced iron-carbon micro-electrolysis with response surface methodology[J]. Chinese Journal of Energetic Materials, 2018, 26(2): 178-184. | |
| [33] | MIRJALILI Seyedeh Zahra, MIRJALILI Seyedali, SAREMI Shahrzad, et al. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied Intelligence, 2018, 48(4): 805-820. |
| [34] | MERAIHI Yassine, GABIS Asma Benmessaoud, MIRJALILI Seyedali, et al. Grasshopper optimization algorithm: Theory, variants, and applications[J]. IEEE Access, 2021, 9: 50001-50024. |
| [35] | SAJJAD Faria, RASHID Muhammad, ZAFAR Afia, et al. An efficient hybrid approach for optimization using simulated annealing and grasshopper algorithm for IoT applications[J]. Discover Internet of Things, 2023, 3(1): 7. |
| [36] | GAO Rongsheng, CAO Yiping, LIU Qi, et al. Research progress in treatment and utilization of fracturing flowback fluid[J]. Chemical Science and Engineering, 2023, 2(3): 29-37. |
| [37] | 周贵忠, 王绚, 刘建庭, 等. 多孔铁-碳-稀土合金填料对高盐废水中氯离子的去除[J]. 环境工程学报, 2013, 7(6): 2167-2172. |
| ZHOU Guizhong, WANG Xuan, LIU Jianting, et al. Removal of chloride ion in high salt wastewater by porous iron-carbon-rare earth alloy filler[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2167-2172. | |
| [1] | 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. |
| SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672. | |
| [2] | 邹才能, 林敏捷, 马锋, 等. 碳中和目标下中国天然气工业进展、挑战及对策[J]. 石油勘探与开发, 2024, 51(2): 418-435. |
| ZOU Caineng, LIN Minjie, MA Feng, et al. Development, challenges and strategies of natural gas industry under carbon neutral target in China[J]. Petroleum Exploration and Development, 2024, 51(2): 418-435. | |
| [3] | 刘文士, 廖仕孟, 向启贵, 等. 美国页岩气压裂返排液处理技术现状及启示[J]. 天然气工业, 2013, 33(12): 158-162. |
| LIU Wenshi, LIAO Shimeng, XIANG Qigui, et al. Status quo of fracturing flowback fluids treatment technologies of US shale gas wells and its enlightenment for China[J]. Natural Gas Industry, 2013, 33(12): 158-162. | |
| [4] | WANG Huan, LU Lu, CHEN Xi, et al. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States[J]. Water Research, 2019, 164: 114942. |
| [5] | ESTRADA José M, BHAMIDIMARRI Rao. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J]. Fuel, 2016, 182: 292-303. |
| [6] | LUEK Jenna L, GONSIOR Michael. Organic compounds in hydraulic fracturing fluids and wastewaters: A review[J]. Water Research, 2017, 123: 536-548. |
| [7] | Ahmadun FAKHRU’L-RAZI, PENDASHTEH Alireza, ABDULLAH Luqman Chuah, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
| [8] | DE AGUIAR PEDOTT Victor, DELLA ROCCA Daniela Gier, WESCHENFELDER Silvio Edegar, et al. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water[J]. Journal of Environmental Management, 2024, 370: 122638. |
| [9] | 于建国, 韩昫身, 金艳. 页岩气压裂返排液生物处理技术研究进展[J]. 石油与天然气化工, 2022, 51(5): 131-138. |
| YU Jianguo, HAN Xushen, JIN Yan. Biological treatment of shale gas flowback and produced water: A review[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 131-138. | |
| [10] | YANG Zemeng, MA Yuepeng, LIU Ying, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. |
| [11] | YANG Xiaoyi, XUE Yu, WANG Wenna. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis[J]. Bioresource Technology, 2009, 100(2): 649-653. |
| [12] | CHENG Jiehong, YE Renkai, ZHU Jun, et al. Effect of ferrite doped sludge-based catalysts on methane production in anaerobic digestion of organic solid waste[J]. Fuel, 2024, 368: 131309. |
| [13] | 李海东, 杨远坤, 郭姝姝, 等. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
| LI Haidong, YANG Yuankun, GUO Shushu, et al. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. | |
| [14] | HUONG Do Tra, NGUYEN Van Tu, Xuan Linh HA, et al. Enhanced degradation of phenolic compounds in coal gasification wastewater by methods of microelectrolysis Fe-C and anaerobic-anoxic-oxic moving bed biofilm reactor (A2O-MBBR)[J]. Processes, 2020, 8(10): 1258. |
| [15] | HUANG Chao, PENG Fen, GUO Haijun, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697-707. |
| [16] | WAN Zhonghao, CHO Dong-Wan, TSANG Daniel C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution, 2019, 247: 410-420. |
| [17] | 麻微微, 韩洪军, 徐春艳, 等. 铁碳微电解预处理煤热解废水的效能及生物毒性研究[J]. 煤炭科学技术, 2018, 46(9): 62-67. |
| MA Weiwei, HAN Hongjun, XU Chunyan, et al. Removal efficiency and biotoxicity evaluation of iron-carbon micro-electrolysis process for coal pyrolysis wastewater pretreatment[J]. Coal Science and Technology, 2018, 46(9): 62-67. | |
| [18] | HAN Guihong, CAI Baogang, YANG Shuzhen, et al. Resource utilization of copper slag for microelectrolysis material preparation for phenol degradation[J]. Journal of Environmental Chemical Engineering, 2024, 12(4): 113151. |
| [19] | 云箭, 张华, 马信缘, 等. 深部煤层气井胍胶返排液回用处理技术优化及应用[J]. 石油学报, 2023, 44(11): 1959-1973. |
| YUN Jian, ZHANG Hua, MA Xinyuan, et al. Optimization and application of treatment technology for guanidine gum fracturing flowback fluid in deep coalbed methane wells[J]. Acta Petrolei Sinica, 2023, 44(11): 1959-1973. | |
| [20] | LUO Mina, YANG Hanchao, WANG Kuntai, et al. Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment[J]. Chemosphere, 2023, 313: 137415. |
| [21] | 郑帅, 孙鑫格, 谢亮, 等. 油田压裂返排液的电化学处理[J]. 环境工程学报, 2023, 17(11): 3543-3553. |
| ZHENG Shuai, SUN Xinge, XIE Liang, et al. Electrochemical treatment of fracturing fluid in oil field[J]. China Industrial Economics, 17(11): 3543-3553.. | |
| [22] | ZHU Ling, HUANG Daikuan, DU Hao. Pretreatment of rubber additives processing wastewater by aluminum-carbon micro-electrolysis process: Process optimization and mechanism analysis[J]. Water, 2022, 14(4): 582. |
| [23] | 赵瑾, 姜天翔, 王勋亮, 等. Fenton耦合铁碳微电解技术处理电镀废水的工艺优化[J]. 化学与生物工程, 2024, 41(1): 63-68. |
| ZHAO Jin, JIANG Tianxiang, WANG Xunliang, et al. Optimization in treatment process of electroplating wastewater by Fenton-coupled iron-carbon micro-electrolysis technology[J]. Chemistry & Bioengineering, 2024, 41(1): 63-68. | |
| [24] | 范峥, 田润芝, 林亮, 等. 利用基于PSO算法的径向基人工神经网络优化重催干气脱硫[J]. 化工进展, 2021, 40(6): 3107-3118. |
| [1] | YIN Xiaoyun, ZHU Jin, LIU Chunyan, ZHANG Jintao, XU Yuan, ZHU Yingru, SU Ming, SUN Yue, SUN Jie, YUAN Ying. Energy optimization of CPS sulfur recovery unit based on Plackett-Burman design and response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 124-133. |
| [2] | MA Yun, CUI Jiahao, DU Jie, ZHANG Fan, SHAN Qiaoli, NIU Ruize, BAI Haitao. Prospect of research on advanced oxidation processes for fracturing flowback fluids in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 441-450. |
| [3] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [4] | CHEN Jianhong, ZHANG Kaiji, CHEN Qingle, YANG Shuai, FANG Wei. Multi-objective optimization calculation and analysis for selecting petrochemical flare gas recovery method under variation scenario [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1218-1227. |
| [5] | XU Zhi, JIANG Changwei, LI Bing, QI Yuquan, QIAN Fa, LI Guangwei. Multi-objective optimization of thermal management system for lithium battery packs coupled with phase-change cooling and liquid cooling [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5627-5639. |
| [6] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
| [7] | ZHU Lianyan, ZHOU Xingfu. Mn-doped DSA electrode and optimized application in wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3459-3467. |
| [8] | PAN Tongtong, CUI Xiangmei. Preparation of methylglucamine-functionalized rGO/MWCNTs-OH composite aerogels and its adsorption of boron [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3386-3397. |
| [9] | XU Bing, ZHANG Qian, WU Huanhuan, SHAO Guangyi, TIAN Shuwen, CHAI Wenming, ZHANG Ming, YAO Hong. Carbon footprint analysis and environmental impact assessment of integrated membrane process for fracturing flowback fluid based on LCA [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7105-7114. |
| [10] | LIU Hualin, QIAO Yue, WEI Zhiwei, BAO Yaling, WANG Liyang, LI Shuosen, HE Chang. Production scheduling optimization model of crude oil industry chain considering volatility constraints [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6700-6710. |
| [11] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
| [12] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
| [13] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
| [14] | HAN Fen, YANG Na, SUN Yongli, JIANG Bin, XIAO Xiaoming, ZHANG Lyuhong. Removal of emulsified water in oil by glass fiber coalescer [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6723-6732. |
| [15] | CHANG Tian, WANG Yu, ZHAO Zuotong, HU Jinchao, SHEN Zhenxing. Optimization of catalytic oxidation of trichloroethylene over Mn-Ce/HZSM-5 using response surface methodology [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5830-5842. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |