Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7190-7204.DOI: 10.16085/j.issn.1000-6613.2024-1817
• Resources and environmental engineering • Previous Articles
ZHU Rong1(
), LI Shuangjun2, HUANG Yaowei1, LI Wanyang3, LI Chunfeng1, LAN Wenchao1, PENG Yujia1, DENG Shuai1(
)
Received:2024-11-07
Revised:2025-03-13
Online:2026-01-06
Published:2025-12-25
Contact:
DENG Shuai
朱蓉1(
), 李双俊2, 黄耀炜1, 李万洋3, 李淳风1, 兰文超1, 逄钰家1, 邓帅1(
)
通讯作者:
邓帅
作者简介:朱蓉(2000—),女,博士研究生,研究方向为直接空气碳捕集技术。E-mail:zhur0924@tju.edu.cn。
基金资助:CLC Number:
ZHU Rong, LI Shuangjun, HUANG Yaowei, LI Wanyang, LI Chunfeng, LAN Wenchao, PENG Yujia, DENG Shuai. Progress on carbon capture technology for vehicle exhausts[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7190-7204.
朱蓉, 李双俊, 黄耀炜, 李万洋, 李淳风, 兰文超, 逄钰家, 邓帅. 机动车尾气碳捕集技术研究进展[J]. 化工进展, 2025, 44(12): 7190-7204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1817
| 内燃机参数 | 尾气特征 | VCCOR技术 | 文献 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 型号 | 燃料 | 转速/r·min-1 | 负荷 | 成分 | 温度/℃ | 流速 | 压力/MPa | CO2体积分数/% | 捕集方式 | CO2捕获率 | 能耗 | |
| M936G | 天然气 | 1000 | 75% | CO2, H2O, N2 | 560 | 0.09kg/s | 0.109 | 15.40 | 固相吸附(活性炭) | 70.00% | 631kJ/kg | [ |
| Ford EcoSport (Euro-Ⅴ) | 汽油 | 700 | — | CO2, CO, NO x, HC | 200 | 5800L/h | 0.101 | 14.10 | 固相吸附(Al2O3) | 7.35% | — | [ |
| Volkswagen jetta TDI | 柴油 | 800 | - | CO2, CO, HC, O2 | 200 | 195kg/h | 0.101 | 2.56 | 固相吸附(Al2O3) | 14.40% | [ | |
| — | 柴油 | 800 | — | CO2, CO, NO x, HC, O2 | 200 | 195kg/h | 0.101 | 4.45 | 固相吸附(ZSM-5沸石) | 43.00% | — | [ |
| Kirloskar TAF AV1 | 柴油 | — | — | CO2, CO, HC, NO x, | 200 | — | — | — | 固相吸附(沸石13X) | 45.00% | — | [ |
| Volvo D13 | 柴油 | 1200 | 25600kg | CO2, N2, H2O | 110 | 100g/s | 3 | 15.00 | 固相吸附(KAUST-7) | 53.00% | — | [ |
| — | — | — | — | CO2, N2 | 95 | 157L/min | — | — | 溶剂吸收(50% NaOH和50%Ca(OH)2) | 100%~20% (0~370min) | — | [ |
| Turbocharged DI diesel engine | 柴油 | 1500 | 1.13kg | CO2, CO, NO x, HC, O2 | 76 | — | — | 5.98 | 溶剂吸收(乙醇胺) | 90.95% | 再生能耗2.2kW·h | [ |
| M936G | 天然气 | 1900 | 25% | CO2 | — | 754.7kg/h | 0.109 | — | 溶剂吸收(质量分数30%乙醇胺) | 66.00% | — | [ |
| — | 柴油 | — | 3500kg | CO2, N2, H2O | 250 | 13.3kmol/h | 0.303 | 10.00 | 膜分离(MFI-氧化铝中空纤维膜) | 75.00% | — | [ |
| 内燃机参数 | 尾气特征 | VCCOR技术 | 文献 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 型号 | 燃料 | 转速/r·min-1 | 负荷 | 成分 | 温度/℃ | 流速 | 压力/MPa | CO2体积分数/% | 捕集方式 | CO2捕获率 | 能耗 | |
| M936G | 天然气 | 1000 | 75% | CO2, H2O, N2 | 560 | 0.09kg/s | 0.109 | 15.40 | 固相吸附(活性炭) | 70.00% | 631kJ/kg | [ |
| Ford EcoSport (Euro-Ⅴ) | 汽油 | 700 | — | CO2, CO, NO x, HC | 200 | 5800L/h | 0.101 | 14.10 | 固相吸附(Al2O3) | 7.35% | — | [ |
| Volkswagen jetta TDI | 柴油 | 800 | - | CO2, CO, HC, O2 | 200 | 195kg/h | 0.101 | 2.56 | 固相吸附(Al2O3) | 14.40% | [ | |
| — | 柴油 | 800 | — | CO2, CO, NO x, HC, O2 | 200 | 195kg/h | 0.101 | 4.45 | 固相吸附(ZSM-5沸石) | 43.00% | — | [ |
| Kirloskar TAF AV1 | 柴油 | — | — | CO2, CO, HC, NO x, | 200 | — | — | — | 固相吸附(沸石13X) | 45.00% | — | [ |
| Volvo D13 | 柴油 | 1200 | 25600kg | CO2, N2, H2O | 110 | 100g/s | 3 | 15.00 | 固相吸附(KAUST-7) | 53.00% | — | [ |
| — | — | — | — | CO2, N2 | 95 | 157L/min | — | — | 溶剂吸收(50% NaOH和50%Ca(OH)2) | 100%~20% (0~370min) | — | [ |
| Turbocharged DI diesel engine | 柴油 | 1500 | 1.13kg | CO2, CO, NO x, HC, O2 | 76 | — | — | 5.98 | 溶剂吸收(乙醇胺) | 90.95% | 再生能耗2.2kW·h | [ |
| M936G | 天然气 | 1900 | 25% | CO2 | — | 754.7kg/h | 0.109 | — | 溶剂吸收(质量分数30%乙醇胺) | 66.00% | — | [ |
| — | 柴油 | — | 3500kg | CO2, N2, H2O | 250 | 13.3kmol/h | 0.303 | 10.00 | 膜分离(MFI-氧化铝中空纤维膜) | 75.00% | — | [ |
| VCCOR技术与评价指标 | 技术优势 | 技术制约 | 技术成熟度 | 紧凑性 | 捕集效率 | 能源消耗 |
|---|---|---|---|---|---|---|
| 溶剂吸收 | 高效吸收,技术成熟 | 溶剂蒸发损失大,再生能耗高,设备腐蚀 | 成熟 | 尺寸较大吸收塔、解吸塔及换热器的安装 | 高(90%+) | 高 |
| 固相吸附 | 适用低浓度及空间受限碳源 | 受限于吸附剂成本、吸附容量及稳定性 | 较成熟 | 设备较小,适合模块化部署 | 较高(80%~90%) | 低至中等 |
| 膜分离 | 能耗较低,操作简便 | 易受污染,膜材料稳定性差,成本较高 | 较新 | 占地面积小,紧凑型最佳 | 中等(70%~85%) | 中等 |
| 低温分离 | 高捕集效率 | 适用高浓度碳源,高制冷能耗 | 较成熟 | 压缩、制冷装置占地面积大 | 高(95%+) | 非常高 |
| 微藻固碳 | 可持续,低能耗,高附加值 | 能量利用效率低,依赖阳光 | 不成熟 | 需较大面积的养殖空间 | 中等(70%~85%) | 低 |
| VCCOR技术与评价指标 | 技术优势 | 技术制约 | 技术成熟度 | 紧凑性 | 捕集效率 | 能源消耗 |
|---|---|---|---|---|---|---|
| 溶剂吸收 | 高效吸收,技术成熟 | 溶剂蒸发损失大,再生能耗高,设备腐蚀 | 成熟 | 尺寸较大吸收塔、解吸塔及换热器的安装 | 高(90%+) | 高 |
| 固相吸附 | 适用低浓度及空间受限碳源 | 受限于吸附剂成本、吸附容量及稳定性 | 较成熟 | 设备较小,适合模块化部署 | 较高(80%~90%) | 低至中等 |
| 膜分离 | 能耗较低,操作简便 | 易受污染,膜材料稳定性差,成本较高 | 较新 | 占地面积小,紧凑型最佳 | 中等(70%~85%) | 中等 |
| 低温分离 | 高捕集效率 | 适用高浓度碳源,高制冷能耗 | 较成熟 | 压缩、制冷装置占地面积大 | 高(95%+) | 非常高 |
| 微藻固碳 | 可持续,低能耗,高附加值 | 能量利用效率低,依赖阳光 | 不成熟 | 需较大面积的养殖空间 | 中等(70%~85%) | 低 |
| [1] | Seungchul WOO, JEONG Yusin, LEE Kihyung. Feasibility study of exhaust energy recovery system for mobile carbon capture operations in commercial engines through 1D simulation[J]. Energies, 2023, 16(24): 8025. |
| [2] | RITCHIE Hannah. Cars, planes, trains: where do CO2 emissions from transport come from?[R/OL]. (2020-10-06) [2024-11-07]. . |
| [3] | UNION European. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 settingCO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (recast) (Text with EEA relevance)Text with EEA relevance[EB/OL]. (2019-04-25) [2024-11-07]. . |
| [4] | LARSON Eric. Net-zero America: potential pathways, infrastructure, and impacts, interim report[R/OL]. (2021-10-29) [2024-11-07]. . |
| [5] | Alexander GARCÍA‐MARIACA, Eva LLERA‐SASTRESA. Energy and economic analysis feasibility of CO2 capture on a natural gas internal combustion engine[J]. Greenhouse Gases: Science and Technology, 2022, 13(2): 144-159. |
| [6] | 国际清洁交通委员会. 欧盟重型车CO2标准修订[EB/OL]. (2024-06-26) [2024-11-07]. . |
| International Council on Clean Transportation. Revision of CO2 standards for heavy-duty vehicles in the European Union[EB/OL]. (2024-06-26) [2024-11-07]. . | |
| [7] | 国际清洁交通委员会. 迈向零排放重卡之路: 美国重型车温室气体排放标准新规及其影响[EB/OL]. (2024-04-26) [2024-11-07]. . |
| International Council on Clean Transportation (ICCT). Toward the path of zero-emission heavy-duty trucks: New regulations on greenhouse gas emission standards for heavy-duty vehicles in the United States and their impacts[EB/OL]. (2024-04-26) [2024-11-07]. . | |
| [8] | International Energy Agency. Energy Technology Outlook 2020[R/OL]. (2020-10) [2024-11-07]. . |
| [9] | MAAS Heiko, SCHAMEL Andreas, WEBER Carsten, et al. Review of combustion engine efficiency improvements and the role of e-fuels[C]// Internationaler Motorenkongress 2016. Wiesbaden: Springer Fachmedien Wiesbaden, 2016: 463-483. |
| [10] | GÜR Turgut M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965. |
| [11] | HARRISON Daniel. Automotive powertrain forecast 2020—2030 navigating regional and redgulatory divergence on the road to electrification[EB/OL]. (2019-10-25) [2024-11-07]. |
| [12] | 清华大学互联网产业研究院. 零碳交通白皮书[R/OL]. (2022-12-27) [2024-11-07]. . |
| Institute of Internet Industry, Tsinghua University. White paper on zero-carbon transportation[R/OL]. (2022-12-27) [2024-11-07]. . | |
| [13] | SOTOMAYOR Francisco. Future of carbon capture: materials and strategies[D]. Ann Arbor, MI, USA: University of Michigan, 2016. |
| [14] | KIM Taenam, KIM Kangseok, LEE Giwook, et al. Guidelines for the design of solid CO2 adsorbents for mobile carbon capture in heavy-duty vehicles: A review[J]. Korean Journal of Chemical Engineering, 2024, 41(1): 25-42. |
| [15] | QUADRELLI Elsje Alessandra, CENTI Gabriele, DUPLAN Jean‐Luc, et al. Carbon dioxide recycling: Emerging large‐scale technologies with industrial potential[J]. ChemSusChem, 2011, 4(9): 1194-1215. |
| [16] | MITTAL Shivika, HANAOKA Tatsuya, SHUKLA Priyadarshi R, et al. Air pollution co-benefits of low carbon policies in road transport: A sub-national assessment for India[J]. Environmental Research Letters, 2015, 10(8): 085006. |
| [17] | Andrzej ZIÓŁKOWSKI, Paweł FUĆ, LIJEWSKI Piotr, et al. Analysis of exhaust emissions from heavy-duty vehicles on different applications[J]. Energies, 2022, 15(21): 7886. |
| [18] | SKOBIEJ Kinga, PIELECHA Jacek. Analysis of the exhaust emissions of hybrid vehicles for the current and future RDE driving cycle[J]. Energies, 2022, 15(22): 8691. |
| [19] | Branislav ŠARKAN, Marek JAŚKIEWICZ, KUBIAK Przemysław, et al. Exhaust emissions measurement of a vehicle with retrofitted LPG system[J]. Energies, 2022, 15(3): 1184. |
| [20] | YANG Dong, WEI Shiming, MA Yinjie, et al. Influence of critical parameters on combustion and emission characteristics of methanol/diesel dual fuel compression combustion engine[J]. Fuel, 2024, 368: 131647. |
| [21] | Alexander GARCÍA-MARIACA, Eva LLERA-SASTRESA, MORENO Francisco. CO2 capture feasibility by temperature swing adsorption in heavy-duty engines from an energy perspective[J]. Energy, 2024, 292: 130511. |
| [22] | RAJDURAI Mylaudy S, RAO A Haresh Srinivasa, KAMALAKKANNAN K CO 2 Capture using activated alumina in gasoline passenger vehicles [J]. International Journal of Engineering Research and Applications, 2016, 6(4): 73-77 |
| [23] | MAYAKRISHNAN Jaikumar. Reduction of carbon dioxide emissions from diesel passenger vehicle exhaust tail pipe by capturing method using activated alumina with analyzed reactor chamber[J]. Journal of Mechanical and Civil Engineering, 2016, 13: 83-91. |
| [24] | VENKATESH V, MAYAKRISHNAN Jaikumar, MYLAUDY S, et al. CO2 capture by using modified ZSM-5 zeolite in diesel powered vehicle[J]. Journal of Mechanical and Civil Engineering, 2016, 13: 102-107. |
| [25] | SARAVANAN S, RAMESH KUMAR C. Carbon dioxide capture using adsorption technology in diesel engines[J]. International Journal of Renewable Energy Research, 2020, 10(4). |
| [26] | PEZZELLA Giuseppe, BHATT Prashant M, ALHAJI Abdulhadi, et al. Onboard capture and storage system using metal-organic frameworks for reduced carbon dioxide emissions from vehicles[J]. Cell Reports Physical Science, 2023, 4(7): 101467. |
| [27] | AHMED Samer F, ATILHAN Mert. Evaluating the performance of a newly developed carbon capture device for mobile emission sources[J]. Journal of Energy Resources Technology, 2017, 139(6): 062101. |
| [28] | KUMAR Pulkit, RATHOD Vishwas, PARWANI Ajit Kumar. Experimental investigation on performance of absorbents for carbon dioxide capture from diesel engine exhaust[J]. Environmental Progress & Sustainable Energy, 2021, 40(5): e1365. |
| [29] | PERA-TITUS M, ALSHEBANI A, NICOLAS C H, et al. Nanocomposite MFI-alumina membranes: High-flux hollow fibers for CO2 capture from internal combustion vehicles[J]. Industrial & Engineering Chemistry Research, 2009, 48(20): 9215-9223. |
| [30] | 唐思扬, 李星宇, 鲁厚芳, 等. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
| Siyang ANG, LI Xingyu, LU Houfang, et al. Perspective on low-energy chemical absorption for CO2 capture[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1102-1106. | |
| [31] | 张卫风, 许元龙, 王秋华. CO2醇胺富液低能耗再生研究进展[J]. 化工进展, 2021, 40(8): 4497-4507. |
| ZHANG Weifeng, XU Yuanlong, WANG Qiuhua. Progress of research on regeneration of rich alkanolamine solution with low energy consumption[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4497-4507. | |
| [32] | THOMPSON Jesse, MATIN Naser, LIU Kunlei. Solubility and thermodynamic modeling of carcinogenic nitrosamines in aqueous amine solvents for CO2 capture[J]. Energy Procedia, 2017, 114: 1038-1044. |
| [33] | KUMAR Pulkit, PARWANI Ajit Kumar, RASHIDI Mohammad Mehdi. Mitigation of NO x and CO2 from diesel engine with EGR and carbon capture unit[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(16): 8791-8802. |
| [34] | YOO Miran, HAN Sang-Jun, Jung-Ho WEE. Carbon dioxide capture capacity of sodium hydroxide aqueous solution[J]. Journal of Environmental Management, 2013, 114: 512-519. |
| [35] | KEITH David W, HOLMES Geoffrey, ANGELO David ST,et al. A process for capturing CO2 from the atmosphere[J]. Joule, 2018, 2(8): 1573-1594. |
| [36] | CHAO Cong, DENG Yimin, DEWIL Raf, et al. Post-combustion carbon capture[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110490. |
| [37] | SHARMA Shivom, François MARéCHAL. Carbon dioxide capture from internal combustion engine exhaust using temperature swing adsorption[J]. Frontiers in Energy Research, 2019, 7: 143. |
| [38] | RAVI Maniarasu, RATHORE Sushil Kumar, SIVALINGAM Murugan. Comparative experimental studies of post-combustion carbon capture using adsorbents in a diesel engine exhaust[J]. Water, Air, & Soil Pollution, 2023, 234(7): 403. |
| [39] | LARKIN Collette, MORRISON James, HEMMINGS Molly, et al. Hollow fibre adsorption unit for on-board carbon capture: The key to reducing transport emissions[J]. Carbon Capture Science & Technology, 2022, 2: 100034. |
| [40] | IGNATUSHA Pavlo, LIN Haiqing, KAPUSCINSKY Noe, et al. Membrane separation technology in direct air capture[J]. Membranes, 2024, 14(2): 30. |
| [41] | TSUJI Takeshi, SORAI Masao, SHIGA Masashige, et al. Geological storage of CO2-N2-O2 mixtures produced by membrane-based direct air capture (DAC)[J]. Greenhouse Gases: Science and Technology, 2021, 11(4): 610-618. |
| [42] | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
| WANG Zhi, YUAN Ye, SHENG Menglong, et al. Membrane technology for carbon capture — Research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. | |
| [43] | ASGHARIAN Hossein, Florin IOV, ARAYA Samuel Simon, et al. A review on process modeling and simulation of cryogenic carbon capture for post-combustion treatment[J]. Energies, 2023, 16(4): 1855. |
| [44] | ASGHARIAN Hossein, MARQUES Daniel Lemos, Florin IOV, et al. The role of cryogenic carbon capture in future carbon-neutral societies[J]. International Journal of Greenhouse Gas Control, 2024, 135: 104161. |
| [45] | Carolina FONT-PALMA, David CANN, Chinonyelum UDEMU. Review of cryogenic carbon capture innovations and their potential applications[J]. C, 2021, 7(3): 58. |
| [46] | 毛炜炜, 张磊, 尹庆蓉, 等. 微藻固碳光合作用强化策略及展望[J]. 洁净煤技术, 2022, 28(9): 30-43. |
| MAO Weiwei, ZHANG Lei, YIN Qingrong, et al. Strategies and prospect of photosynthesis mechanism intensification of microalgae CO2 fixation[J]. Clean Coal Technology, 2022, 28(9): 30-43. | |
| [47] | TELLES Enio C, YANG Sam, VARGAS Jose V C, et al. Stationary compression ignition internal combustion engines (CI-ICE) CO2 capturing via microalgae culture using a mini-photobioreactor[C]// 2015 IEEE Conference on Technologies for Sustainability (SusTech). IEEE, 2015: 209-215. |
| [48] | ZHANG Zhen, CANO Zachary Paul, LUO Dan, et al. Rational design of tailored porous carbon-based materials for CO2 capture[J]. Journal of Materials Chemistry A, 2019, 7(37): 20985-21003. |
| [49] | HU Leiqing, CLARK Krysta, ALEBRAHIM Taliehsadat, et al. Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering[J]. Journal of Membrane Science, 2022, 644: 120140. |
| [50] | KAUSHAL Arvind, AHIRWAR Rekha, VARDHAN Ajay Investigation of CO 2 capturing capacity of solid adsorbents (PEIs) polyethylenimines from automotive vehicle exhausts system for 4-stroke SI engine[J]. Bonfring International Journal of Industrial Engineering and Management Science, 2018, 8(2): 31-35. |
| [51] | LEE Won Hee, ZHANG Xin, BANERJEE Sayan, et al. Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption[J]. Joule, 2023, 7(6): 1241-1259. |
| [52] | LARKIN Collette, LI Kang, OLIVA Fermín, et al. Scaling up a hollow fibre adsorption unit for on-board CCS applications using a real gasoline engine exhaust[J]. Chemical Engineering Journal, 2024, 497: 154453. |
| [53] | GARCIA Susana, SMIT Berend. How to decarbonize our energy systems: Process-informed design of new materials for carbon capture[J]. Chemie Ingenieur Technik, 2023, 95(3): 309-314. |
| [54] | DINKER Abhay, AGARWAL Madhu, AGARWAL G D. Heat storage materials, geometry and applications: A review[J]. Journal of the Energy Institute, 2017, 90(1): 1-11. |
| [55] | GRELET Vincent, REICHE Thomas, LEMORT Vincent, et al. Transient performance evaluation of waste heat recovery Rankine cycle based system for heavy duty trucks[J]. Applied Energy, 2016, 165: 878-892. |
| [56] | SPROUSE Charles, DEPCIK Christopher. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery[J]. Applied Thermal Engineering, 2013, 51(1/2): 711-722. |
| [57] | WANG Lu, LIU Zhen, LI Ping, et al. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process[J]. Chemical Engineering Journal, 2012, 197: 151-161. |
| [58] | PLAZA M G, GARCÍA S, RUBIERA F, et al. Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies[J]. Chemical Engineering Journal, 2010, 163(1/2): 41-47. |
| [59] | KIM Jinwoo, YOO Youngdon, KIM Suhyun, et al. Design and assessment of a novel mobile carbon capture system: Energy and exergy analyses[J]. Energy Conversion and Management, 2024, 300: 117934. |
| [60] | CHIEN An-Ting, CHO Sangbeom, JOSHI Yogendra, et al. Electrical conductivity and Joule heating of polyacrylonitrile/carbon nanotube composite fibers[J]. Polymer, 2014, 55(26): 6896-6905. |
| [61] | MOINEE Abdullah AL, ROWNAGHI Ali A, REZAEI Fateme. Challenges and opportunities in electrification of adsorptive separation processes[J]. ACS Energy Letters, 2024, 9(3): 1228-1248. |
| [62] | JIANG L, WANG R Q, GONZALEZ-DIAZ A, et al. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery[J]. Applied Thermal Engineering, 2020, 169: 114973. |
| [63] | MILLWARD Andrew R, YAGHI Omar M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
| [64] | REYNOLDS Christina D. Decarbonizing freight transport: Mobile carbon capture from heavy-duty vehicles[D]. Ann Arbor, MI, USA: University of Michigan, 2019. |
| [65] | SCHMAUSS Travis A, BARNETT Scott A. Viability of vehicles utilizing on-board CO2 capture[J]. ACS Energy Letters, 2021, 6(9): 3180-3184. |
| [66] | XU Bin, RATHOD Dhruvang, YEBI Adamu, et al. A comprehensive review of organic Rankine cycle waste heat recovery systems in heavy-duty diesel engine applications[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 145-170. |
| [1] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
| [2] | YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350. |
| [3] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
| [4] | CHENG Chunhui, MING Shujun, PANG Lei, TIAN Shidong, LI Kelun, LI Tao. Developments in solid porous materials for methane enrichment in coalbed gas [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6215-6232. |
| [5] | SU Huihui, WANG Enlu, XU Yifei. Advances in research on capture of post-combustion carbon dioxide by liquid adsorbents [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5734-5747. |
| [6] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
| [7] | HU Peng, ZHAO Dan, JI Hongbing. Temperature-controlled biomimetic induced-fit-identification for boosting syngas purification [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6133-6135. |
| [8] | Fei SHI, Yifan LI. Advances of mixed matrix membrane for CO2 capture [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
| [9] | Chaoying SUN, Yingjie LI, Xianyao YAN, Jianli ZHAO. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743. |
| [10] | Hanke LI, Chengxiong DANG, Guangxing YANG, Yonghai CAO, Hongjuan WANG, Feng PENG, Hao YU. Process intensification techniques towards carbon dioxide capture: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. |
| [11] | Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. |
| [12] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
| [13] | LIU Kang, XU Shisen, LI Guangyu, REN Yongqiang. Technological process and system analysis of pre-combustion CO2 capture based on IGCC [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907. |
| [14] | HE Junnan, WANG Junyao, DENG Shuai, ZHAO Ruikai, ZHAO Li. Research progress on energy-efficiency analysis of carbon capture:theoretical model, evaluation tool and developing trend [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 406-415. |
| [15] | LIU Jun, MENG Guixiang, YAO Sheng, WANG Zhucheng, XU Kai, HANG Guoqing. Analysis on influence factors of CO2 adsorption kinetics under ultra-low CO2 atmosphere [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3092-3099. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |