Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7176-7189.DOI: 10.16085/j.issn.1000-6613.2024-1807
• Resources and environmental engineering • Previous Articles
LI Qian(
), CHEN Yinping(
), YUAN Qiaoling, SUN Yong, CAO Bo, LU Yuzhi
Received:2024-11-06
Revised:2025-02-09
Online:2026-01-06
Published:2025-12-25
Contact:
CHEN Yinping
通讯作者:
陈银萍
作者简介:李倩(2000—),女,硕士研究生,研究方向为重金属污染土壤修复。E-mail:15719399651@163.com。
基金资助:CLC Number:
LI Qian, CHEN Yinping, YUAN Qiaoling, SUN Yong, CAO Bo, LU Yuzhi. Mechanism and effect of strengthening phytoremediation of cadmium contaminated soil by chelating agent[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7176-7189.
李倩, 陈银萍, 袁巧玲, 孙勇, 曹渤, 卢誉之. 螯合剂强化植物修复镉污染土壤的机制与效果[J]. 化工进展, 2025, 44(12): 7176-7189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1807
| 螯合剂 | 中文名称 | 英文名称 | 化学分子式 | 简称 | 作用金属 | 生物降解能力 |
|---|---|---|---|---|---|---|
| 多羧基氨基酸(APCAs)类 | 乙二胺四乙酸 | ethylene diamine tetraacetic acid | C10H16O8N2 | EDTA | Cd、Pb | × |
| 谷氨酸二乙酸 | glutamate diacetic acid | C9H13NO8 | GLDA | Cd、Pb | √ | |
| 乙二醇四乙酸 | synthetic amino poly carboxylic acids | C14H24N2O10 | EGTA | Cd | √ | |
| 乙二胺二琥珀酸 | ethylenediamine disuccinic acid | C10H16N2O8 | EDDS | Cd、Pb | √ | |
| 次氮基三乙酸 | nitrilotriacetic acid | N(CH2COOH)3 | NTA | Pb、Cd | √ | |
| 天然小分子有机酸(LMWOAs)类 | 柠檬酸 | citric acid | C6H8O | CA | Cd、Pb | √ |
| 草酸 | oxalic acid | H2C2O4 | OA | Cd、Pb | √ | |
| 酒石酸 | tartaric acid | C4H6O6 | TA | Cd | √ | |
| 苹果酸 | malic acid | C4H6O5 | MA | Cd、Zn | √ |
| 螯合剂 | 中文名称 | 英文名称 | 化学分子式 | 简称 | 作用金属 | 生物降解能力 |
|---|---|---|---|---|---|---|
| 多羧基氨基酸(APCAs)类 | 乙二胺四乙酸 | ethylene diamine tetraacetic acid | C10H16O8N2 | EDTA | Cd、Pb | × |
| 谷氨酸二乙酸 | glutamate diacetic acid | C9H13NO8 | GLDA | Cd、Pb | √ | |
| 乙二醇四乙酸 | synthetic amino poly carboxylic acids | C14H24N2O10 | EGTA | Cd | √ | |
| 乙二胺二琥珀酸 | ethylenediamine disuccinic acid | C10H16N2O8 | EDDS | Cd、Pb | √ | |
| 次氮基三乙酸 | nitrilotriacetic acid | N(CH2COOH)3 | NTA | Pb、Cd | √ | |
| 天然小分子有机酸(LMWOAs)类 | 柠檬酸 | citric acid | C6H8O | CA | Cd、Pb | √ |
| 草酸 | oxalic acid | H2C2O4 | OA | Cd、Pb | √ | |
| 酒石酸 | tartaric acid | C4H6O6 | TA | Cd | √ | |
| 苹果酸 | malic acid | C4H6O5 | MA | Cd、Zn | √ |
| 螯合剂 | 螯合剂浓度/mmol·kg-1 | Cd浓度 /mg·kg-1 | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| EDTA | 1 | 100 | 咖啡黄葵 | 增加了芽、根中Cd的积累 | [ |
| 1+1+2 | 2.15 | 鸭茅 | 根系、茎中Cd浓度分别降低了66%和84% | [ | |
| 6 | 6.53 | 玉米 | 植物地上部分Cd含量是对照组的2.53倍 | [ | |
| 6 | 25 | 杂交景天 | 提取量是对照组的1.21倍 | [ | |
| 0.05、0.1 | 50、100 | 金盏菊 | 在Cd添加量为50mg/kg、EDTA添加量为0.05mmol/kg,Cd添加量为50mg/kg、EDTA添加量为0.1mmol/kg,Cd添加量为100mg/kg、EDTA添加量为0.05mmol/kg和Cd添加量为100mg/kg、EDTA添加量为0.1mmol/kg处理的样品中Cd浓度,分别增加了60%、79%、39%和51% | [ | |
| 5 | 3.53 | 蓖麻 | 淄博3号和9号地上部分别对Cd吸收增加了4.4倍和4.0倍 | [ | |
| 2.5 | 25 | 黑麦草 | 芽Cd浓度增加了117% | [ | |
| 1 | 100 | 咖啡黄葵 | 地上部分、根部的积累量增加了29.09%、30.65% | [ | |
| 0.5 | 0.82 | 蓝桉 | 根中Cd浓度增加4.0倍 | [ | |
| 17.85 | 1.5 | 龙葵 | 芽中的Cd浓度增加了36% | [ | |
| 1.5、3、6、9 | 95.2 | 苎麻 | 随着EDTA施用浓度的增加,苎麻叶、茎、根中Cd含量分别增加了0.19~4.21倍、2.20~3.05倍、1.50~3.29倍 | [ | |
| EDDS | 5.0 | 1.57 | 象草 | 根系、地上部分Cd含量分别比对照组提高了16.6%、24.9% | [ |
| 2.5 | 1.05 | 蓖麻 | 根部Cd含量增加了57.42% | [ | |
| 5 | 4.95 | 黑麦草 | 增加了地上部分和根部对Cd的积累量 | [ | |
| 5 | 300 | 向日葵 | 去除率提高了61.25% | [ | |
| 5 | 15 | 向日葵 | Cd的去除效率比对照组高181.51% | [ | |
| 1.5、3、6、9 | 95.2 | 苎麻 | 茎、根中Cd含量分别增加了1.4倍、0.73~2.04倍 | [ | |
| 5.25 | 5.25 | 龙葵 | 地上部分Cd提取量增加了30.17% | [ | |
| 1 | 2.44 | 孔雀草 | 地上部分Cd含量是对照的1.40倍 | [ | |
| 10 | 12 | 龙葵 | 去除率提高了1.89倍 | [ | |
| 5 | 24 | 少花龙葵 | 土壤Cd含量降低了32.13% | [ | |
| NTA | 6 | 6.53 | 玉米 | 地上部分Cd含量是对照组的2.63倍 | [ |
| 30 | 25 | 玉米 | 根系中的Cd浓度是对照组的1.85倍 | [ | |
| 2 | 200 | 高山羊茅 | 地上部分Cd浓度增加了 48.1% | [ | |
| 10 | 12 | 龙葵 | 植物对Cd去除率提高了1.39倍 | [ | |
| 10 | 24 | 少花龙葵 | 茎中Cd含量增加了98.24% | [ | |
| GLDA | 3 | 25 | 杂交景天 | 植物对Cd的提取量是对照的1.40倍 | [ |
| 6 | 6.53 | 玉米 | 地上部分Cd含量是对照的3.01倍 | [ | |
| 5 | 2.13(S1) | 千穗谷 | 对Cd的提取量为对照组的3.87倍(S1)、3.28倍(S2) | [ | |
| 2.89(S2) | |||||
| 3 | 20 | 龙葵 | 植物对Cd提取率提高了28.64% | [ | |
| EGTA | 10 | 12 | 龙葵 | 植物对Cd去除率提高了2.5倍 | [ |
| 10 | 24 | 少花龙葵 | 根中Cd含量增加了143.56% | [ |
| 螯合剂 | 螯合剂浓度/mmol·kg-1 | Cd浓度 /mg·kg-1 | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| EDTA | 1 | 100 | 咖啡黄葵 | 增加了芽、根中Cd的积累 | [ |
| 1+1+2 | 2.15 | 鸭茅 | 根系、茎中Cd浓度分别降低了66%和84% | [ | |
| 6 | 6.53 | 玉米 | 植物地上部分Cd含量是对照组的2.53倍 | [ | |
| 6 | 25 | 杂交景天 | 提取量是对照组的1.21倍 | [ | |
| 0.05、0.1 | 50、100 | 金盏菊 | 在Cd添加量为50mg/kg、EDTA添加量为0.05mmol/kg,Cd添加量为50mg/kg、EDTA添加量为0.1mmol/kg,Cd添加量为100mg/kg、EDTA添加量为0.05mmol/kg和Cd添加量为100mg/kg、EDTA添加量为0.1mmol/kg处理的样品中Cd浓度,分别增加了60%、79%、39%和51% | [ | |
| 5 | 3.53 | 蓖麻 | 淄博3号和9号地上部分别对Cd吸收增加了4.4倍和4.0倍 | [ | |
| 2.5 | 25 | 黑麦草 | 芽Cd浓度增加了117% | [ | |
| 1 | 100 | 咖啡黄葵 | 地上部分、根部的积累量增加了29.09%、30.65% | [ | |
| 0.5 | 0.82 | 蓝桉 | 根中Cd浓度增加4.0倍 | [ | |
| 17.85 | 1.5 | 龙葵 | 芽中的Cd浓度增加了36% | [ | |
| 1.5、3、6、9 | 95.2 | 苎麻 | 随着EDTA施用浓度的增加,苎麻叶、茎、根中Cd含量分别增加了0.19~4.21倍、2.20~3.05倍、1.50~3.29倍 | [ | |
| EDDS | 5.0 | 1.57 | 象草 | 根系、地上部分Cd含量分别比对照组提高了16.6%、24.9% | [ |
| 2.5 | 1.05 | 蓖麻 | 根部Cd含量增加了57.42% | [ | |
| 5 | 4.95 | 黑麦草 | 增加了地上部分和根部对Cd的积累量 | [ | |
| 5 | 300 | 向日葵 | 去除率提高了61.25% | [ | |
| 5 | 15 | 向日葵 | Cd的去除效率比对照组高181.51% | [ | |
| 1.5、3、6、9 | 95.2 | 苎麻 | 茎、根中Cd含量分别增加了1.4倍、0.73~2.04倍 | [ | |
| 5.25 | 5.25 | 龙葵 | 地上部分Cd提取量增加了30.17% | [ | |
| 1 | 2.44 | 孔雀草 | 地上部分Cd含量是对照的1.40倍 | [ | |
| 10 | 12 | 龙葵 | 去除率提高了1.89倍 | [ | |
| 5 | 24 | 少花龙葵 | 土壤Cd含量降低了32.13% | [ | |
| NTA | 6 | 6.53 | 玉米 | 地上部分Cd含量是对照组的2.63倍 | [ |
| 30 | 25 | 玉米 | 根系中的Cd浓度是对照组的1.85倍 | [ | |
| 2 | 200 | 高山羊茅 | 地上部分Cd浓度增加了 48.1% | [ | |
| 10 | 12 | 龙葵 | 植物对Cd去除率提高了1.39倍 | [ | |
| 10 | 24 | 少花龙葵 | 茎中Cd含量增加了98.24% | [ | |
| GLDA | 3 | 25 | 杂交景天 | 植物对Cd的提取量是对照的1.40倍 | [ |
| 6 | 6.53 | 玉米 | 地上部分Cd含量是对照的3.01倍 | [ | |
| 5 | 2.13(S1) | 千穗谷 | 对Cd的提取量为对照组的3.87倍(S1)、3.28倍(S2) | [ | |
| 2.89(S2) | |||||
| 3 | 20 | 龙葵 | 植物对Cd提取率提高了28.64% | [ | |
| EGTA | 10 | 12 | 龙葵 | 植物对Cd去除率提高了2.5倍 | [ |
| 10 | 24 | 少花龙葵 | 根中Cd含量增加了143.56% | [ |
| 螯合剂 | 螯合剂浓度/mmol·kg-1 | Cd浓度/mg·kg-1 | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| MA | 0.1 | 0.1 | 荻 | 根部Cd含量1489μg/g 干重 | [ |
| 0.1 | 0.05 | 欧蒿柳 | 植物总Cd含量为Cd处理组的178% | [ | |
| 1 | 100 | 咖啡黄葵 | 增加了芽、根中Cd的积累 | [ | |
| 0.5 | 50 | 地上部分、根部Cd的积累量分别提高了29.13%、21.80% | [ | ||
| CA | 1 | 0.5、1 | 芥菜 | 在轻度胁迫下,地上部分Cd含量分增加了37%;在重度胁迫下,地上部分和Cd含量增加了24% | [ |
| 5 | 0.30 | 向日葵 | 去除率提高了17.50% | [ | |
| 0.05、0.1 | 50 | 金盏菊 | 植物Cd浓度增加了35%~50% | [ | |
| 10 | 12 | 龙葵 | 去除率提高了1.11倍 | [ | |
| 5 | 24 | 少花龙葵 | 根富集系数是单加Cd处理的1.15倍 | [ | |
| 0.05 | 0.1 | 欧蒿柳 | 提高了杨柳对重金属吸收和积累 | [ | |
| 3、6 | 20 | 欧蒿柳 | 植物叶Cd含量增加了67% | [ | |
| 0.6 | 0.6 | 芥菜 | 增加了根中Cd的积累 | [ | |
| OA | 2.5 | 10.4 | 东南景天 | 地上部分Cd含量增加了42.1% | [ |
| 100 | 0.2 | 鹰嘴豆 | 根和地上部分的Cd的积累量降低了36%和31% | [ |
| 螯合剂 | 螯合剂浓度/mmol·kg-1 | Cd浓度/mg·kg-1 | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| MA | 0.1 | 0.1 | 荻 | 根部Cd含量1489μg/g 干重 | [ |
| 0.1 | 0.05 | 欧蒿柳 | 植物总Cd含量为Cd处理组的178% | [ | |
| 1 | 100 | 咖啡黄葵 | 增加了芽、根中Cd的积累 | [ | |
| 0.5 | 50 | 地上部分、根部Cd的积累量分别提高了29.13%、21.80% | [ | ||
| CA | 1 | 0.5、1 | 芥菜 | 在轻度胁迫下,地上部分Cd含量分增加了37%;在重度胁迫下,地上部分和Cd含量增加了24% | [ |
| 5 | 0.30 | 向日葵 | 去除率提高了17.50% | [ | |
| 0.05、0.1 | 50 | 金盏菊 | 植物Cd浓度增加了35%~50% | [ | |
| 10 | 12 | 龙葵 | 去除率提高了1.11倍 | [ | |
| 5 | 24 | 少花龙葵 | 根富集系数是单加Cd处理的1.15倍 | [ | |
| 0.05 | 0.1 | 欧蒿柳 | 提高了杨柳对重金属吸收和积累 | [ | |
| 3、6 | 20 | 欧蒿柳 | 植物叶Cd含量增加了67% | [ | |
| 0.6 | 0.6 | 芥菜 | 增加了根中Cd的积累 | [ | |
| OA | 2.5 | 10.4 | 东南景天 | 地上部分Cd含量增加了42.1% | [ |
| 100 | 0.2 | 鹰嘴豆 | 根和地上部分的Cd的积累量降低了36%和31% | [ |
| 联合物质 | 试剂A | 试剂B | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| 螯合剂 | GLDA | NTA | 千穗谷 | 植物地上部分和根部Cd含量分别是对照组的4.10倍和3.92倍(S1)、3.42倍和2.60倍(S2) | [ |
| 籽粒苋 | 籽粒苋地上部分Cd含量提升了46.35% | [ | |||
| EDTA | OA | 伴矿景天 | 地上部分和地下部分Cd含量分别增加了77.48%、69.78% | [ | |
| 植物生长调节剂 | CA | DA-6 | 珐菲亚 | Cd的提取总量增加了1.38倍 | [ |
| EDTA | 黑麦草 | 地上部分Cd含量,比EDTA处理高1.0倍,比单独处理高1.4倍 | [ | ||
| GLDA | 龙葵 | 地上部分Cd提取量提高了51.04% | [ | ||
| EDDS | 柳枝稷 | Cd含量是对照组的1.93倍 | [ | ||
| 野苋菜 | 地上部分Cd含量与单独EDDS相比增加了34%,与单独IDA-6相比增加了44% | [ | |||
| ALA | 向日葵 | 协同处理下去除率提高了95.00% | [ | ||
| CA | 协同处理下去除率提高了62.50% | ||||
| EDTA | 细胞分裂素 | 蓝桉 | 根和芽中的Cd浓度是单加螯合剂的1.2倍和1.6倍 | [ | |
| IDS | BR | 龙葵 | 地上部分的Cd含量提高了41.5% | [ | |
| 营养元素 | EDDS | 尿素 | 黑麦草 | 根和地上部分MDA含量均显著增加,分别比对照增加了74.6%和35.6% | [ |
| 生物螯合剂 | 硫酸铵 | 龙葵 | 地上部分Cd提取率提高了3.67倍 | [ | |
| PASP | 铵态氮 | 孔雀草 | 地上部分Cd的累积量提高了201% | [ | |
| EDDS | 磷肥 | 蓖麻 | 增加地上部分对Cd的提取量 | [ | |
| 表面活性剂 | EDTA | TX-100、SLS | 东南景天 | 增加了土壤Cd的生物有效性 | [ |
| EDDS | 鼠李糖脂 | 黑麦草 | 促进黑麦草地上部分植株提取Cd的含量 | [ | |
| 微生物 | EDTA | 植物促生根菌 | 东南景天 | 增加了植物地上部分的Cd浓度 | [ |
| EDDS | 印度梨形孢菌 | 象草 | Cd的去除效率提高了23.4% | [ | |
| CA | 巨型芽孢杆菌 | 黑麦草 | Cd的茎积累量是对照的2.31倍 | [ |
| 联合物质 | 试剂A | 试剂B | 供试植物 | 修复效果 | 参考文献 |
|---|---|---|---|---|---|
| 螯合剂 | GLDA | NTA | 千穗谷 | 植物地上部分和根部Cd含量分别是对照组的4.10倍和3.92倍(S1)、3.42倍和2.60倍(S2) | [ |
| 籽粒苋 | 籽粒苋地上部分Cd含量提升了46.35% | [ | |||
| EDTA | OA | 伴矿景天 | 地上部分和地下部分Cd含量分别增加了77.48%、69.78% | [ | |
| 植物生长调节剂 | CA | DA-6 | 珐菲亚 | Cd的提取总量增加了1.38倍 | [ |
| EDTA | 黑麦草 | 地上部分Cd含量,比EDTA处理高1.0倍,比单独处理高1.4倍 | [ | ||
| GLDA | 龙葵 | 地上部分Cd提取量提高了51.04% | [ | ||
| EDDS | 柳枝稷 | Cd含量是对照组的1.93倍 | [ | ||
| 野苋菜 | 地上部分Cd含量与单独EDDS相比增加了34%,与单独IDA-6相比增加了44% | [ | |||
| ALA | 向日葵 | 协同处理下去除率提高了95.00% | [ | ||
| CA | 协同处理下去除率提高了62.50% | ||||
| EDTA | 细胞分裂素 | 蓝桉 | 根和芽中的Cd浓度是单加螯合剂的1.2倍和1.6倍 | [ | |
| IDS | BR | 龙葵 | 地上部分的Cd含量提高了41.5% | [ | |
| 营养元素 | EDDS | 尿素 | 黑麦草 | 根和地上部分MDA含量均显著增加,分别比对照增加了74.6%和35.6% | [ |
| 生物螯合剂 | 硫酸铵 | 龙葵 | 地上部分Cd提取率提高了3.67倍 | [ | |
| PASP | 铵态氮 | 孔雀草 | 地上部分Cd的累积量提高了201% | [ | |
| EDDS | 磷肥 | 蓖麻 | 增加地上部分对Cd的提取量 | [ | |
| 表面活性剂 | EDTA | TX-100、SLS | 东南景天 | 增加了土壤Cd的生物有效性 | [ |
| EDDS | 鼠李糖脂 | 黑麦草 | 促进黑麦草地上部分植株提取Cd的含量 | [ | |
| 微生物 | EDTA | 植物促生根菌 | 东南景天 | 增加了植物地上部分的Cd浓度 | [ |
| EDDS | 印度梨形孢菌 | 象草 | Cd的去除效率提高了23.4% | [ | |
| CA | 巨型芽孢杆菌 | 黑麦草 | Cd的茎积累量是对照的2.31倍 | [ |
| 与螯合剂联用物质类别 | 优点 | 缺点 | 环境安全性 | 成本效益 |
|---|---|---|---|---|
| 螯合剂 | 降低螯合剂单独使用的毒性 | 高浓度、难降解的螯合剂破坏土壤生态系统 | 难降解类安全性低 | 合成类成本高; 天然类成本低 |
| 表面活性剂 | 降低土壤与Cd吸附; 改善土壤条件 | 使用不当破坏土壤结构、污染水体;降解产物具有毒性 | 对土壤结构、水体生态有负面影响 | 价格跨度宽泛,按需择优选取 |
| 植物生长调节剂 | 调节植物激素平衡; 促进根系生长 | 过量施加,破坏土壤微生物 | 大多能自然降解,短期内残留少 | 价格区间有别,总体成本可控 |
| 营养元素 | 提供植物生长养分; 增加植物生物量 | 过量易打破土壤养分均衡 | 合理施肥是保障环境安全的关键 | 成本依肥料、螯合剂品类而定 |
| 微生物 | 缓解螯合剂对植物生长和土壤呼吸的抑制作用 | 微生物种群一旦失控;严重破坏生态秩序;后期管理难 | 少量引入对生态冲击较小 | 前期成本高,后续成本递减 |
| 与螯合剂联用物质类别 | 优点 | 缺点 | 环境安全性 | 成本效益 |
|---|---|---|---|---|
| 螯合剂 | 降低螯合剂单独使用的毒性 | 高浓度、难降解的螯合剂破坏土壤生态系统 | 难降解类安全性低 | 合成类成本高; 天然类成本低 |
| 表面活性剂 | 降低土壤与Cd吸附; 改善土壤条件 | 使用不当破坏土壤结构、污染水体;降解产物具有毒性 | 对土壤结构、水体生态有负面影响 | 价格跨度宽泛,按需择优选取 |
| 植物生长调节剂 | 调节植物激素平衡; 促进根系生长 | 过量施加,破坏土壤微生物 | 大多能自然降解,短期内残留少 | 价格区间有别,总体成本可控 |
| 营养元素 | 提供植物生长养分; 增加植物生物量 | 过量易打破土壤养分均衡 | 合理施肥是保障环境安全的关键 | 成本依肥料、螯合剂品类而定 |
| 微生物 | 缓解螯合剂对植物生长和土壤呼吸的抑制作用 | 微生物种群一旦失控;严重破坏生态秩序;后期管理难 | 少量引入对生态冲击较小 | 前期成本高,后续成本递减 |
| [1] | SHAH Vijendra, DAVEREY Achlesh. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology & Innovation, 2020, 18: 100774. |
| [2] | He Zhenli, Shentu J, Xiao E Yang, et al. Heavy metal contamination of soils: sources, indicators and assessment[J]. 2015. |
| [3] | 环境保护部.环境保护部和国土资源部发布全国土壤污染状况调查公报[EB/OL].(2014-04-17) [2024-11-01]. . |
| [4] | YANG Qianqi, LI Zhiyuan, LU Xiaoning, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of The Total Environment, 2018, 642: 690-700. |
| [5] | CUI Xiaoqiang, ZHANG Jianwei, WANG Xutong, et al. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products[J]. Journal of Hazardous Materials, 2021, 405: 123832. |
| [6] | HU Qian, ZHOU Na, RENE Eldon R, et al. Stimulation of anaerobic biofilm development in the presence of low concentrations of toxic aromatic pollutants[J]. Bioresource Technology, 2019, 281: 26-30. |
| [7] | ZHANG Kailu, LIU Fan, ZHANG Haixiang, et al. Trends in phytoremediation of heavy metals-contaminated soils: A Web of Science and CiteSpace bibliometric analysis[J]. Chemosphere, 2024, 352: 141293. |
| [8] | REDDY Krishna R, CHIRAKKARA Reshma A. Phytoremediation of field soil with mixed contamination[C]// Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. Singapore: Springer Singapore, 2019: 624-629. |
| [9] | PARSADOUST Farzad, SHIRVANI Mehran, SHARIATMADARI Hossein, et al. Effects of GLDA, MGDA, and EDTA chelating ligands on Pb sorption by montmorillonite[J]. Geoderma, 2020, 366: 114229. |
| [10] | WANG Junye, AGHAJANI DELAVAR Mojtaba. Techno-economic analysis of phytoremediation: A strategic rethinking[J]. Science of the Total Environment, 2023, 902: 165949. |
| [11] | TINDANZOR Eric, GUO Zhaohui, LI Tianshuang, et al. Leaching and characterization studies of heavy metals in contaminated soil using sequenced reagents of oxalic acid, citric acid, and a copolymer of maleic and acrylic acid instead of ethylenediaminetetraacetic acid[J]. Environmental Science and Pollution Research International, 2023, 30(3): 6919-6934. |
| [12] | SHAHID M, AUSTRUY A, ECHEVARRIA G, et al. EDTA-enhanced phytoremediation of heavy metals: A review[J]. Soil and Sediment Contamination: an International Journal, 2014, 23(4): 389-416. |
| [13] | YIN Fengwei, LI Jianbin, WANG Yilu, et al. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116113. |
| [14] | DENG Shaoxiong, ZHANG Xuan, ZHU Yonghua, et al. Recent advances in phyto-combined remediation of heavy metal pollution in soil[J]. Biotechnology Advances, 2024, 72: 108337. |
| [15] | MAHMUD Jubayer AL, HASANUZZAMAN Mirza, NAHAR Kamrun, et al. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L. Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems[J]. Ecotoxicology and Environmental Safety, 2018, 147: 990-1001. |
| [16] | LI Zhishuai, YANG Yan, GUAN Wenjie, et al. Insight into the subcellular mechanism of maximizing Cd accumulation in hyperaccumulator Solanum nigrum L. under the action of biodegradable chelating agent[J]. Environmental and Experimental Botany, 2023, 207: 105226. |
| [17] | MOUSAVI Afsaneh, POURAKBAR Latifeh, SIAVASH MOGHADDAM Sina, et al. The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105456. |
| [18] | SALBITANI Giovanna, MARESCA Viviana, CIANCIULLO Piergiorgio, et al. Non-protein thiol compounds and antioxidant responses involved in bryophyte heavy-metal tolerance[J]. International Journal of Molecular Sciences, 2023, 24(6): 5302. |
| [19] | THAKUR Sveta, SINGH Lakhveer, WAHID Zularisam Ab, et al. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives[J]. Environmental Monitoring and Assessment, 2016, 188(4): 206. |
| [20] | Magda PÁL, JANDA Tibor, SZALAI Gabriella. Interactions between plant hormones and thiol-related heavy metal chelators[J]. Plant Growth Regulation, 2018, 85(2): 173-185. |
| [21] | HASAN Md Kamrul, CHENG Yuan, KANWAR Mukesh K, et al. Responses of plant proteins to heavy metal stress—A review[J]. Frontiers in Plant Science, 2017, 8: 1492. |
| [22] | HUANG Rong, CUI Xiaoying, LUO Xianzhen, et al. Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community[J]. Environmental Pollution, 2021, 283: 117159. |
| [23] | GUAN Haiyan, DONG Li, ZHANG Yan, et al. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum ‘Immergrunchen’ for Cd and Pb contaminated soil[J]. International Journal of Phytoremediation, 2022, 24(13): 1395-1404. |
| [24] | YANG Qiao, YANG Chen, YU Hao, et al. The addition of degradable chelating agents enhances maize phytoremediation efficiency in Cd-contaminated soils[J]. Chemosphere, 2021, 269: 129373. |
| [25] | ZHANG Haixiang, ZHANG Kailu, DUAN Yali, et al. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica[J]. Journal of Hazardous Materials, 2024, 465: 133266. |
| [26] | 刘文英, 吴刚, 胡红青. EDDS对土壤铜镉有效性及蓖麻吸收转运的影响[J]. 环境科学, 2024, 45(3): 1803-1811. |
| LIU Wenying, WU Gang, HU Hongqing. Effect of EDDS application on soil Cu/Cd availability and uptake/transport by castor[J]. Environmental Science, 2024, 45(3): 1803-1811. | |
| [27] | BEIYUAN Jingzi, FANG Linchuan, CHEN Hansong, et al. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process[J]. Environmental Pollution, 2021, 268: 115719. |
| [28] | MEHRAB Narges, CHOROM Mostafa, NOROUZI MASIR Mojtaba, et al. Alteration in chemical form and subcellular distribution of cadmium in maize (Zea mays L.) after NTA-assisted remediation of a spiked calcareous soil[J]. Arabian Journal of Geosciences, 2021, 14(21): 2235. |
| [29] | FEI Ling, XU Peixian, DONG Qin, et al. Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis)[J]. Chemosphere, 2018, 212: 124-132. |
| [30] | LIANG Yuqin, XIAO Xiyuan, GUO Zhaohui, et al. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil[J]. Chemosphere, 2021, 285: 131420. |
| [31] | SAFFARI Vahid Reza, SAFFARI Mahboub. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil[J]. International Journal of Phytoremediation, 2020, 22(11): 1204-1214. |
| [32] | GUO Haipeng, CHEN Houming, HONG Chuntao, et al. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation[J]. Ecotoxicology and Environmental Safety, 2017, 141: 119-128. |
| [33] | XU Ling, LI Juanjuan, NAJEEB Ullah, et al. Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues[J]. Journal of Hazardous Materials, 2021, 407: 124764. |
| [34] | RAZA Ali, HABIB Madiha, KAKAVAND Shiva Najafi, et al. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms[J]. Biology, 2020, 9(7): 177. |
| [35] | ZHANG Hanzhi, GUO Qingjun, YANG Junxing, et al. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil[J]. Ecotoxicology and Environmental Safety, 2016, 133: 57-62. |
| [36] | HE Shanying, WU Qiuling, HE Zhenli. Synergetic effects of DA-6/GA3 with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne[J]. Chemosphere, 2014, 117: 132-138. |
| [37] | MOUSAVI Afsaneh, POURAKBAR Latifeh, SIAVASH MOGHADDAM Sina. Effects of malic acid and EDTA on oxidative stress and antioxidant enzymes of okra (Abelmoschus esculentus L.) exposed to cadmium stress[J]. Ecotoxicology and Environmental Safety, 2022, 248: 114320. |
| [38] | LUO Jie, CAI Limei, QI Shihua, et al. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks[J]. Chemosphere, 2017, 185: 386-393. |
| [39] | HAN Ran, DAI Huiping, TWARDOWSKA Irena, et al. Aqueous extracts from the selected hyperaccumulators used as soil additives significantly improve accumulation capacity of Solanum nigrum L. for Cd and Pb[J]. Journal of Hazardous Materials, 2020, 394: 122553. |
| [40] | 刘金, 殷宪强, 孙慧敏, 等. EDDS与EDTA强化苎麻修复镉铅污染土壤[J]. 农业环境科学学报, 2015, 34(7): 1293-1300. |
| LIU Jin, YIN Xianqiang, SUN Huimin, et al. EDTA and EDDS enhanced remediation of Cd and Pb contaminated soil by ramie(Boehmeria nivea)[J]. Journal of Agro-Environment Science, 2015, 34(7): 1293-1300. | |
| [41] | CHEN Li, YANG Jinyan, WANG Dan. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents[J]. Journal of Cleaner Production, 2020, 263: 121491. |
| [42] | 罗洋, 孙丽, 刘方, 等. DA-6和EDDS施用对龙葵生长、 Cd吸收和土壤细菌群落结构的影响[J]. 环境科学, 2022, 43(3): 1641-1648. |
| LUO Yang, SUN Li, LIU Fang, et al. Effects of DA-6 and EDDS on growth and Cd uptake by Solanum nigrum L. and on the soil bacterial community structure[J]. Environmental Science, 2022, 43(3): 1641-1648. | |
| [43] | WANG Yale, XU Yingming, QIN Xu, et al. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca Americana L. in Cd-contaminated alkaline soil in northern China[J]. Environmental Science and Pollution Research International, 2020, 27(20): 25248-25260. |
| [44] | SHARMA Padma, RATHEE Sonia, AHMAD Mustaqeem, et al. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum [J]. International Journal of Phytoremediation, 2023, 25(9): 1106-1115. |
| [45] | SHARMA Padma, RATHEE Sonia, AHMAD Mustaqeem, et al. Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum [J]. Environmental Science and Pollution Research International, 2022, 29(38): 57102-57111. |
| [46] | WANG Kai, LIU Yonghong, SONG Zhengguo, et al. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils[J]. Chemosphere, 2019, 237: 124480. |
| [47] | TENG Yue, LI Zhishuai, YU An, et al. Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents[J]. Environmental Science and Pollution Research International, 2022, 29(37): 56750-56759. |
| [48] | ZHANG Songlin, CHEN Hongchun, HE Danni, et al. Effects of exogenous organic acids on Cd tolerance mechanism of Salix variegata franch. under Cd stress[J]. Frontiers in Plant Science, 2020, 11: 594352. |
| [49] | ARSENOV Danijela, Milan ŽUPUNSKI, Milan BORIŠEV, et al. Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis[J]. International Journal of Phytoremediation, 2020, 22(1): 29-39. |
| [50] | KAUR Ravdeep, YADAV Poonam, SHARMA Anket, et al. Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(Ⅱ) toxicity[J]. Ecotoxicology and Environmental Safety, 2017, 145: 466-475. |
| [51] | SAKOUHI Lamia, KHARBECH Oussama, MASSOUD Marouane BEN, et al. Oxalic acid mitigates cadmium toxicity in Cicer arietinum L. germinating seeds by maintaining the cellular redox homeostasis[J]. Journal of Plant Growth Regulation, 2022, 41(2): 697-709. |
| [52] | FERREIRA Carlos M H, SOUSA Cátia A, Inés SANCHIS-PÉREZ, et al. Calcareous soil interactions of the iron(Ⅲ) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max)[J]. Science of The Total Environment, 2019, 647: 1586-1593. |
| [53] | 高一丹, 袁旭音, 汪宜敏, 等. 不同螯合剂对两类Cd和Ni污染土壤的淋洗修复对比[J]. 中国环境科学, 2022, 42(1): 250-257. |
| GAO Yidan, YUAN Xuyin, WANG Yimin, et al. Leaching remediation efficiency of biodegradable chelating agents for the Cd and Ni contaminated soils[J]. China Environmental Science, 2022, 42(1): 250-257. | |
| [54] | TAO Qi, LI Jinxing, LIU Yuankun, et al. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii [J]. Chemosphere, 2020, 245: 125547. |
| [55] | 韩廿. 螯合剂对植物修复镉砷复合污染农田的影响[D]. 北京: 中国农业科学院, 2020. |
| HAN Nian. Effect of chelating agent on phytoremediation of cadmium and arsenic compound contaminated farmland[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
| [56] | LIU Xiaoyan, MAO Ying, ZHANG Xinying, et al. Effects of PASP/NTA and TS on the phytoremediation of pyrene-nickel contaminated soil by Bidens Pilosa L[J]. Chemosphere, 2019, 237: 124502. |
| [57] | GUO Di, Amjad ALI, REN Chunyan, et al. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators[J]. Ecotoxicology and Environmental Safety, 2019, 167: 396-403. |
| [58] | VARJANI Sunita, RAKHOLIYA Parita, YONG NG How, et al. Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives[J]. Bioresource Technology, 2021, 319: 124213. |
| [59] | LI Zhangwei, ZHANG Rushan, ZHANG Huimin. Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by Amaranthus hybridus Linn[J]. International Journal of Phytoremediation, 2018, 20(11): 1121-1128. |
| [60] | 石旻飞, 李晔, 袁江, 等. 螯合剂与表面活性剂强化东南景天修复Cd污染土壤的研究[J]. 安徽农业科学, 2015, 43(20): 99-102. |
| SHI Minfei, LI Ye, YUAN Jiang, et al. Study on chelator/surfactant-enhanced remediation of Cd-contaminated soil by Sedum alfredii hance[J]. Journal of Anhui Agricultural Sciences, 2015, 43(20): 99-102. | |
| [61] | CHEN Li, LONG Chan, WANG Dan, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. |
| [62] | FASEELA Parammal, VEENA Mathew, Akhila SEN, et al. Elicitors fortifies the plant resilience against metal and metalloid stress[J]. International Journal of Phytoremediation, 2025, 27(3): 372-389. |
| [63] | HE Shanying, WU Qiuling, HE Zhenli. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne [J]. Chemosphere, 2013, 93(11): 2782-2788. |
| [64] | HUO Wenmin, ZOU Rong, WANG Li, et al. Effect of different forms of N fertilizers on the hyperaccumulator Solanum nigrum L. and maize in intercropping mode under Cd stress[J]. RSC Advances, 2018, 8(70): 40210-40218. |
| [65] | YANG Wei, DAI Huiping, WEI Shuhe, et al. Effect of ammonium sulfate combined with aqueous bio-chelator on Cd uptake by Cd-hyperaccumulator Solanum nigrum L[J]. Chemosphere, 2024, 352: 141317. |
| [66] | XU Zhimin, WANG Junfeng, LI Wanli, et al. Nitrogen fertilizer affects rhizosphere Cd re-mobilization by mediating gene AmALM2 and AmALMT7 expression in edible amaranth roots[J]. Journal of Hazardous Materials, 2021, 418: 126310. |
| [67] | WEN Binbin, XIAO Wei, MU Qin, et al. How does nitrate regulate plant senescence?[J]. Plant Physiology and Biochemistry, 2020, 157: 60-69. |
| [68] | 郑彦, 陈银萍, 姚彩萍, 等. 氮肥协同EDDS强化三叶鬼针草修复镉污染土壤[J]. 兰州交通大学学报, 2022, 41(4): 111-118. |
| ZHENG Yan, CHEN Yinping, YAO Caiping, et al. Study on the synergism of NitrogenFertilizer and EDDS to enhance the remediation of cadmium contaminated soil by Bidens pilosa L.[J]. Journal of Lanzhou Jiaotong University, 2022, 41(4): 111-118. | |
| [69] | JU Wenliang, LIU Lei, JIN Xiaolian, et al. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils[J]. Chemosphere, 2020, 254: 126724. |
| [70] | JU Wenliang, DUAN Chengjiao, LIU Lei, et al. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria[J]. Chemosphere, 2022, 287: 132288. |
| [71] | KUMAR Adarsh, TRIPTI, MALEVA Maria, et al. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L.[J]. Chemosphere, 2021, 276: 130038. |
| [72] | KHOSO Muneer Ahmed, WAGAN Sindho, ALAM Intikhab, et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective[J]. Plant Stress, 2024, 11: 100341. |
| [73] | 周峻宇, 谷雨, 唐珍琦, 等. 复合螯合剂对籽粒苋修复镉污染农田的影响[J]. 中国农业科技导报, 2023, 25(12): 186-194. |
| ZHOU Junyu, GU Yu, TANG Zhenqi, et al. Effect of compound chelating agent on remediation of cadmium contaminated farmland by Amaranthus hypochondriacus L.[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 186-194. | |
| [74] | 伍德, 彭鸥, 刘玉玲, 等. 螯合剂及组配对伴矿景天修复两种镉污染土壤的影响[J]. 生态环境学报, 2022, 31(12): 2414-2421. |
| WU De, PENG Ou, LIU Yuling, et al. Effects of chelating agents and thier combinations on remediation of two cadmium contaminated soils by sedum plumbizincicola[J]. Ecology and Environmental Sciences, 2022, 31(12): 2414-2421. | |
| [75] | 王正, 孙兆军, MOHAMED Sameh, 等. 胺鲜酯与螯合剂GLDA联合强化柳枝稷吸收积累镉效果[J]. 环境科学, 2020, 41(12): 5589-5599. |
| WANG Zheng, SUN Zhaojun, MOHAMED Sameh, et al. DA-6 and GLDA enhanced Pancium virgatum L. to phytoextract Cd from contaminated soils[J]. Environmental Science, 2020, 41(12): 5589-5599. | |
| [76] | LI Zhangwei, LIN Wenjie. Synergetic effects of DA-6/24-EBL and NTA on uptake, subcellular distribution and chemical form of Cd in Amaranthus hybridus L.[J]. Soil Science and Plant Nutrition, 2020, 66(4): 653-661. |
| [77] | WANG Xiaoli, HU Jiale, DONG Junneng, et al. Iminodisuccinic acid and 28-epihomobrassinolide promoted the accumulation of cadmium in black nightshade (Solanum Nigrum L.) and its response mechanism[J]. Polish Journal of Environmental Studies, 2024, 33(4): 4759-4766. |
| [78] | 王冰清. 铵态氮肥与有机酸联合强化孔雀草修复镉污染土壤及其机制研究[D]. 合肥: 安徽农业大学, 2021. |
| WANG Bingqing. Efficiency and mechanism of ammonium nitrogen fertilizer and organic acid in enhancing Tagetes patula L. remediation of cadmium contaminated soil[D]. Hefei: Anhui Agricultural University, 2021. | |
| [79] | 刘文英. 磷和EDDS对蓖麻修复铜镉复合污染土壤的效果研究[D]. 武汉: 华中农业大学, 2022. |
| LIU Wenying. Phytoremediation effects of phosphorus and EDDS on copper and cadmium contaminated soils by Ricinus Communis L.[D]. Wuhan: Huazhong Agricultural University, 2022. | |
| [80] | 石福贵, 郝秀珍, 周东美, 等. 鼠李糖脂与EDDS强化黑麦草修复重金属复合污染土壤[J]. 农业环境科学学报, 2009, 28(9): 1818-1823. |
| SHI Fugui, HAO Xiuzhen, ZHOU Dongmei, et al. Remediation of the combined polluted soil by growing ryegrass enhanced by EDDS/rhamnolipid[J]. Journal of Agro-Environment Science, 2009, 28(9): 1818-1823. | |
| [81] | GUO Junkang, Xin LYU, JIA Honglei, et al. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance[J]. Journal of Environmental Sciences, 2020, 88: 361-369. |
| [82] | LI Feili, QIU Yuehua, XU Xinyang, et al. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110185. |
| [83] | YANG Xiaoqian, LI Jiapeng, YANG Zhonghua, et al. Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass[J]. International Journal of Phytoremediation, 2024, 26(3): 382-392. |
| [1] | LIU Baicheng, LI Fayun, ZHAO Qihui, LIN Meixia. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by Gramineae plants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3736-3748. |
| [2] | ZHU Zihan, CHEN Weihua, HUA Yinfeng, ZHANG Haitao, ZHAO Youcai, GUO Yanyan, DAI Shijin. Research progress and consideration on medicament stabilization of heavy metals in waste incineration fly ash [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6358-6368. |
| [3] | Yue LIU, Tingyu NIU, Tianguo LI, Ming JIANG, Junfen XIONG, Bo LI, Fangdong ZHAN, Yongmei HE. Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5252-5265. |
| [4] | YUAN Dandan, ZAHNG Yongjiang, LI Feng, SONG Hua. Effect of preparation conditions on hydrodesulfurization performance of the Ni2P/TiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progree, 2015, 34(07): 1882-1886. |
| [5] |
SHANG Xiaoqin1,LUO Nan2,LIANG Minhua1,YANG Sugai1,XIE Guoren1.
Synthesis and characterization of heavy metal chelate of DTC-modified cassava starch [J]. Chemical Industry and Engineering Progree, 2010, 29(7): 1330-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |