1 | 李小平, 王继文, 赵亚楠, 等. 城市土壤中铅地球化学过程与儿童铅暴露的关系[J]. 国外医学(医学地理分册), 2016, 32(7): 85-92. | 1 | LI Xiaoping, WANG Jiwen, ZHAO Yanan, et, al. Review of toxic lead in urban soil and exposure risk to children[J]. Foreign Medical Sciences (Section of Medgeography), 2016, 32(7): 85-92. | 2 | 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013, 32(3): 409-417. | 2 | HUANG Yizong, HAO Xiaowei, LEI Ming, et al. The remediation technology and remediation practice of heavy metals contaminated soil[J]. Journal of Agro-Environment Science, 2013, 32(3): 409-417. | 3 | 刘文庆, 祝方, 马少云. 重金属污染土壤电动力学修复技术研究进展[J]. 安全与环境工程, 2015, 22(2): 55-60. | 3 | LIU Wenqing, ZHU Fang, MA Shaoyun. Research progress on the electro-kinetic remediation of soil polluted by heavy metal[J]. Safety and Environmental Engineering, 2015, 22(2): 55-60. | 4 | BEGUM Z A, RAHMAN I M M, TATE Y, et al. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants[J]. Chemosphere, 2012, 87(10): 1161-1170. | 5 | ANJUM N A, PEREIRA M E, AHMAD I. Phytotechnologies remediation of environmental contaminants[J]. International Journal of Environmental Analytical Chemistry, 2013, 93(14): 1557-1558. | 6 | ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. | 7 | VARUN M, SOUZA R D, FAVAS J C, et al. Utilization and supplementation of phytoextraction potential of some terrestrial plants in metal-contaminated[J]. Phytoremediation: Management of Environmental Contaminants, 2015, 1(13): 177-200. | 8 | MIRANSARI M. Soil microbes and plant fertilization[J]. Applied Microbiology and Biotechnology, 2011, 92(5): 875-885. | 9 | CHE-CASTALDO J P, INOUYE D. Interspecific competition between a non-native hyperaccumulating plant (Noccaea caerulescens, Brassicaceae) and a native congener across a soil-metal gradient[J]. Australian Journal of Botany, 2015, 63(1): 141-151. | 10 | SHARMA A, SACHDEV S. Cadmium toxicity and its phytoremediation: a review[J]. International Journal of Scientific and Engineering Research, 2015, 6(9): 395-405. | 11 | ZU Y Q, LI Y, MIN H, et al. Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition[J]. Frontiers of Environmental Science & Engineering, 2015, 9(2): 250-258. | 12 | FORTE J, MUTITI S. Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil[J]. Water Air and Soil Pollution, 2017, 228(2): 1-11. | 13 | MEMON A R. Metal hyperaccumulators: mechanisms of hyperaccumulation and metal tolerance[M]//Phytoremediation. Springer International Publishing, 2016. | 14 | BROOKS R R. Plant that hyperaccumulate heavy metals[M]. Cambridge: The University Press, 1998. | 15 | GUPTA N, RAM H, KUMAR B. Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(1): 89-109. | 16 | ANTONY V D E, MAX V B, PETER V W. Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia)[J]. Botanical Studies, 2016, 57(1): 1-8. | 17 | 宋榕洁, 唐艳葵, 陈玲. 超富集植物对镉、砷的累积特性及耐性机制研究进展[J]. 江苏农业科学, 2015, 43(6): 6-10. | 17 | SONG Rongjie, TANG Yankui, CHEN Lin. Research progress on accumulation characteristic and tolerance mechanism of hyperaccumulator to cadmium and arsenic[J]. Jiangsu Agriculture Sciences, 2015, 43(6): 6-10. | 18 | LI T Q,TAO Q, SHOHAG M J I, et al. Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J]. Plant Soil, 2015, 389: 387-399. | 19 | XU Q S, MIN H L, CAI S J, et al. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L.[J]. Chemosphere, 2012, 89(1):114-120 | 20 | HASSAN S, MATHESIUS U. The role of flavonoids in root rhizosphere signaling: opportunities and challenges for improving plant microbe interactions[J]. Journal of Experimental Botany. 2012, 63(9): 3429-3444. | 21 | 何永美, 刘鲁峰, 谢春琼, 等. 镉对铅锌矿区小花南芥根际真菌氢离子分泌的影响[J]. 云南农业大学学报(自然科学版), 2014, 29(3): 404-408. | 21 | HE Yongmei, LIU Lufeng, XIE Chunqiong, et al. Effects of cadmium on the hydrogen ion secretion of rhizosphere fungi of Arabis alpina L. var. parviflora Franch in abandoned lead-zinc mining area[J]. Journal of Yunnan Agricultural University(Natural Science), 2014, 29(3): 404-408. | 22 | WU Z, MCGROUTHER K, HUANG J, et al. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment[J]. Soil Biology and Biochemistry, 2014, 68: 283-290. | 23 | AGHABABAEI F, RAIESI F, HOSSEINPUR A. The influence of earthworm and mycorrhizal co-inoculation on Cd speciation in a contaminated soil[J]. Soil Biology and Biochemistry, 2014, 78(78): 21-29. | 24 | REES F, GERMAIN C, STERCKEMAN T, et al. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar[J]. Plant Soil, 2015, 395: 57-73. | 25 | SHAHID M, AUSTRUY A, ECHEVARRIA G, et al. EDTA-enhanced phytoremediation of heavy metals: a review[J]. Soil and Sediment Contamination: An International Journal, 2014, 23(4): 389-416. | 26 | JALALI M, KHANLARI Z V. Redistribution of fractions of zinc, cadmium, nickel, copper and lead uncontaminated calcareous soils treated with EDTA[J]. Archives of Environmental Contamination and Toxicology, 2007, 53(4): 519-532. | 27 | CHAIYARAT R, SUEBSIMA R, PUTWATTANA N, et al. Effects of soil amendments on growth and metal uptake by Ocimum gratissimum, grown in Cd/Zn-contaminated Soil[J].Water, Air & Soil Pollution, 2011, 214(1): 383-392. | 28 | SAFARI S A, TAHMASBIAN I, SAFARI S. Chelating agents and heavy metal phytoextraction[M]. Heavy Metal Contamination of Soils. Switzerland: Springer International Publishing, 2015. | 29 | REDDY K R, CAMESELLE C. Electrochemical remediation technologies for polluted soils, sediments and groundwater[M]. USA: John Wiley and Sons, 2009. | 30 | CAMESELLE C, REDDY K R. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils[J]. Electrochimica Acta, 2012, 86(1): 10-22. | 31 | NG Y S, GUPTA B S, HASHIM M A. Effects of operating parameters on the performance of washing-electrokinetic two stage process as soil remediation method for lead removal[J]. Separation and Purification Technology, 2015, 156: 403-413. | 32 | YANG J S, KWON M J, CHOI J Y, et al. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning[J]. Chemosphere, 2014, 117: 79-86. | 33 | LI D, TAN X Y, WU X D, et al. Effects of electrolyte characteristics on soil conductivity and current in electrokinetic remediation of lead-contaminated soil[J]. Separation and Purification Technology, 2014, 135: 14-21. | 34 | ZHOU M, WANG H, ZHU S F, et al. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility[J]. Environment Science Pollution Research, 2015, 22(21): 16907-16913. | 35 | NG Y S, GUPTA B S, HASHIM M A. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique[J]. Environment Science Pollution Research, 2016, 23(1): 546-555. | 36 | CAI Z P, DOREN J V, FANG Z Q, et al. Improvement in electrokinetic remediation of Pb-contaminated soil near lead acid battery factory[J]. Transactionas of Nonferrous Mental Society of China, 2015, 25: 3088-3095. | 37 | ZHANG P, JIN C J, SUN Z F, et al. Assessment of acid enhancement schemes for electrokinetic remediation of Cd/Pb contaminated soil[J]. Water Air and Soil Pollution, 2016, 227(6): 217. | 38 | BAHEMMAT M, FARAHBAKHSH M. Catholyte-conditioning enhanced electrokinetic remediation of Co and Pb polluted soil[J]. Environmental Engineering and Management Journal, 2015, 14(1): 89-96. | 39 | SUZUKI T, NIINAEA M, KOGA T, et al. EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440: 145-150. | 40 | NG Y S, GUPTA B S, HASHIM M A. Performance evaluation of two-Stage electrokinetic washing as soil remediation method for lead removal using different wash solutions[J]. Electrochimica Acta, 2014, 147: 9-18. | 41 | SONG Y, AMMAMI M, BENAMAR A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J]. Environment Science and Pollution Research, 2016, 23(11): 10577-10586. | 42 | ZHANG T, ZOU H, JI M H, et al. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes[J]. Environment Science and Pollution Research, 2014, 21(4): 3126-3133. | 43 | LEMSTROM S. Electricity in agriculture and horticulture[M]. London: The Electrician Printing and Publishing, 1904. | 44 | O'CONNOR C S, LEPPI N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study[J]. Environmental Monitoring and Assessment, 2003, 84(1): 141-158. | 45 | LOBO B M, PéREZ-SANZ A, PLAZA B A. Influence of coupled electrokinetic-phytoremediation on soil remediation[M]// Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. USA: John Wiley and Sons. 2009. | 46 | WAN Q F, DENG D C, BAI Y, et al. Phytoremediation and electrokinetic remediation of uranium contaminated soils: a review[J]. Journal of Nuclear and Radiochemistry, 2012, 34(3): 148-156. | 47 | YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195(52): 11-29. | 48 | LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1): 3-9. | 49 | ZHOU D M, CHEN H F, CANG L. Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field[J]. Chemosphere, 2007, 67(8): 1671-1676. | 50 | ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of Environmental Science and Health A, 2008, 43(8): 926-933. | 51 | CANG L, WANG Q Y, ZHOU D M, et al. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard[J]. Separation and Purification Technology, 2011, 79(2): 246-253. | 52 | CHEN X J, SHEN, Z M, LEI Y M, et al. Effects of electrokinetics on bioavailability of soil nutrients[J]. Soil Science, 2006, 171(8): 638-647. | 53 | CANG L, ZHOU D M, WANG Q Y, et al. Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities[J]. Electrochimica Acta, 2012, 86(4): 41-48. | 54 | 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆: 重庆大学, 2015. | 54 | NIE Bin. The study of influence of direct current electrical fields on phytoremediation of Cd [D]. Chongqing: Chongqing University, 2015. | 55 | BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3): 318-326. | 56 | 陈海峰, 周东美, 仓龙, 等. 垂直电场对EDTA络合诱导铜锌植物吸收及其迁移风险的影响[J]. 土壤学报, 2007(1): 174-178. | 56 | CHEN Haifeng, ZHOU Dongmei, CANG Long, et al. Effects of vertical electiuc fild and EDTA application on ryegrass copper and zinc uptake and their leaching risks[J]. Acta Pedologica Sinica, 2007(1): 174-178. | 57 | 仓龙, 徐宏婷, 宋岳. 直流电场对印度芥菜体内镉亚细胞分布和化学形态的影响[J]. 安全与环境学报, 2018, 18(2): 721-726. | 57 | CANG Long, XU Hongting, SONG Yue. Effect of direct-current electric field on the subcellular distribution and chemical forms of Cd in Indian mustard[J]. Journal of Safey and Environment, 2018, 18(2): 721-726. | 58 | LIM J M, JIN B, BUTCHER D J. A comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard (Brassica juncea)[J]. Bulletin of the Korean Chemical Society, 2012, 33(8): 2737-2740. | 59 | 肖文丹, 叶雪珠, 徐海舟, 等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4): 927-937. | 59 | XIAO Wendan, YE Xuezhu, XU Haizhou, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum alfredii[J]. Acta Pedologica Sinica, 2017, 54(4): 927-937. | 60 | 徐海舟. 直流电场-东南景天联合修复Cd污染土壤效率的研究[D].杭州: 浙江农林大学, 2015. | 60 | XU Haizhou. Efficiency of direct current (DC) field and Sedum alfredii hance on remediation to cadmium contaminated soil[D]. Hangzhou: Zhejiang A&F University, 2015. | 61 | ROJANAPITHAYAKORN D, ARIYAKANON N. Electrokinetic enhancement on phytoremediation in zinc contaminated soil by Ruzi grass[J]. Environment Asia, 2016, 9(1): 92-98. | 62 | PUTRA R S, OHKAWA Y, TANAKA S. Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass[J]. Separation and Purification Technology, 2013, 102: 34-42. | 63 | SIYAR R, ARDEJANI F D, FARAHBAKHSH M, et al. Potential of vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic[J]. Chemosphere, 2019, 246:125802. | 64 | LI J X, ZHANG J, LARSON S L, et al. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard[J]. International Journal of Phytoremediation, 2019, 21(12): 1197-1204. | 65 | JAMIL N, MADUN A, AHMAD TAJUDIN S A, et al. An overview of electrokinetic remediation assisted phytoremediation to remediate barren acidic soil[J]. Applied Mechanics and Materials, 2015, 773: 1476-1480. | 66 | 郭晓宏, 朱广龙, 魏学智. 5种草本植物对土壤重金属铅的吸收、富集及转运[J]. 水土保持研究, 2016, 23(1): 182-186. | 66 | GUO Xiaohong, ZHU Guanglong, WEI Xuezhi. Characteristics of uptake, bioaccumulation and translocation of soil lead (Pb) in five species of herbaceous plants[J]. Research of Soil and Water Conservation, 2016, 23(1): 182-186. | 67 | MAO X Y, HAN F X, SHAO X H, et al. Electrokinetic enhanced phytoremediation for the restoration of multi-metal(LOID) contaminated soils[J]. Advances in Environmental Research, 2015, 42: 26-52. | 68 | CHIRAKKARA R A, REDDY R, CAMESELLE C. Electrokinetic amendment in phytoremediation of mixed contaminated soil[J]. Electrochimica Acta, 2015, 181: 179-191. | 69 | FALCIGLIA P, VAGLIASINDI F. Enhanced phytoextraction of lead by Indian mustard using electric field[J]. Chemical Engineering Transactions, 2013, 32: 379-384. | 70 | JAMARI S. Electrokinetic-assisted phytoremediation of heavy metal in riverbank soil[D]. Malaysia: Universitiy Tun Hussein Onn Malaysia, 2016. | 71 | TAHMASBIAN I, SINEGANI A. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents[J]. Environmental Science and Pollution Research, 2015, 23 (3): 2479-2486. | 72 | 姚桂华, 徐海舟, 朱林刚, 等. 不同有机物料对东南景天修复重金属污染土壤效率的影响[J]. 环境科学, 2015, 36(11): 4268-4276. | 72 | YAO Guihua, XU Haizhou, ZHU Lingang, et al. Effects of different kinds of organic materials on soil heavy metal phytoremediation efficiency by Sedum alfredii hance[J]. Environmental Science, 2015, 36(11): 4268-4276. | 73 | 刘国, 徐磊, 何佼, 等.有机酸增强电动法修复镉污染土壤技术研究[J]. 环境工程, 2014, 32(10): 165-169. | 73 | LIU Guo, XU Lei, HE Jiao, et al. Effect of organic acids on electric remediation method for cadmium contaminated soil[J]. Environmental Engineering, 2014, 32(10): 165-169. | 74 | 樊广萍, 朱海燕, 郝秀珍, 等. 不同的增强试剂对重金属污染场地土壤的电动修复影响[J].中国环境科学, 2015, 35(5): 1458-1465. | 74 | FAN Guangping, ZHU Haiyan, HAO Xiuzhen, et al. Electrokinetic remediation of an electroplating contaminated soil with different enhancing electrolytes[J]. China Environmental Science, 2015, 35(5): 1458-1465. | 75 | 聂亚平, 王晓维, 万进荣, 等. 几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J]. 生态科学, 2016, 35(2): 174-182. | 75 | NIE Yaping, WANG Xiaowei, WAN Jinrong, et al. Research progress on heavy metal (Pb, Zn, Cd, Cu) hyperaccumulating plants and strengthening measures of phytoremediation[J]. Ecological Science, 2016, 35(2): 174-182. | 76 | 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4): 729-735. | 76 | CANG Long, ZHOU Dongmei, WU Danya. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zinc and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4): 729-735. | 77 | CHAUDHARY N, SINGH B V, et al. Electrokinetic remediation of heavy metal contaminated soil: a short review[J]. Discovery, 2015, 42(191): 6-1. | 78 | EMBONGA Z, JAMARIA S, JOHAR S, et al. The assessment of heavy mental concentration in river bank soil under the effect of electrokinetic-assisted phytoremediation using XRF and EDX analysis[J]. Journal Teknologi (Sciences and Engineering), 2015, 77(30): 133-137. | 79 | MAO X Y, HAN F X, SHAO X H, et al. Coupled electro-kinetic remediation and phytoremediation of metal (loid) contaminated soils[J]. Bioremediation and Biodegradation, 2015, 6(2): 163-166. | 80 | MAO X Y, HAN F X, SHAO X H, et al. The distribution and elevated solubility of lead, arsenic and cesium in contaminated paddy soil enhanced with the electrokinetic field[J]. International Journal of Environment Science and Technology, 2016, 13(7): 1641-1652. | 81 | MAO X Y, HAN F X, SHAO X H, et al. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2016, 125: 16-24. | 82 | WU Y C, JING X X, GAO C H, et al. Recent advances in microbial electrochemical system for soil bioremediation[J]. Chemosphere, 2018, 211: 156-163. | 83 | WANG C, DENG H, ZHAO F. The remediation of chromium(Ⅵ)-contaminated soils using microbial fuel cells[J]. Soil and Sediment Contamination: an International Journal, 2016, 25: 1-12. | 84 | WANG H, SONG H, YU R, et al. New process for copper migration by bioelectricity generation in soil microbial fuel cells[J]. Environmental Science and Pollution Research, 2016, 23: 13147-13154. | 85 | HABIBUL N, HU Y, SHENG G P, et al. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils[J]. Journal of Hazardous Materials, 2016, 318: 9-14. | 86 | HABIBUL N, HU Y, WANG Y K, et al. Bioelectrochemical chromium (Ⅵ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50: 3882-3889. | 87 | XU J W, LIU C, HSU P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10(1): 2440. |
|