Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (12): 7226-7237.DOI: 10.16085/j.issn.1000-6613.2024-1775
• Resources and environmental engineering • Previous Articles
LYU Yufeng1(
), LI Bin1, FENG Tingjuan1, CHEN Yuhang2, NIE Xin2, LIU Qingyu2, MENG Fanbin3, WEI Huanhuan2, SUN Yi4, WANG Weiqi4, QIN Yansong5, WANG Jiahui6
Received:2024-11-03
Revised:2025-01-10
Online:2026-01-06
Published:2025-12-25
Contact:
LYU Yufeng
吕育锋1(
), 李斌1, 冯婷娟1, 陈禹杭2, 聂鑫2, 刘庆玉2, 孟凡彬3, 魏欢欢2, 孙毅4, 王伟奇4, 秦艳松5, 王加蕙6
通讯作者:
吕育锋
作者简介:吕育锋(1986—),男,博士,高级工程师,研究方向为农村饮用水处理。E-mail: lvyf@iwhr.com。
基金资助:CLC Number:
LYU Yufeng, LI Bin, FENG Tingjuan, CHEN Yuhang, NIE Xin, LIU Qingyu, MENG Fanbin, WEI Huanhuan, SUN Yi, WANG Weiqi, QIN Yansong, WANG Jiahui. Compound electron donor enhances biological treatment efficiency of nitrate in groundwater and synergistic effect of microorganisms[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7226-7237.
吕育锋, 李斌, 冯婷娟, 陈禹杭, 聂鑫, 刘庆玉, 孟凡彬, 魏欢欢, 孙毅, 王伟奇, 秦艳松, 王加蕙. 复合电子供体强化地下水硝酸盐生物处理效能及微生物协同作用[J]. 化工进展, 2025, 44(12): 7226-7237.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1775
| 成分 | 投加量/mg·L-1 |
|---|---|
| NaNO3 | 364.2 |
| Na2S2O3·5H2O(SND-SR系统) | 1062.6 |
| NaHCO3(SND-SR、GSDC-NRS系统) | 401.4 |
| C6H12O6(GNRS系统) | 385 |
| KH2PO4 | 19.8 |
| 成分 | 投加量/mg·L-1 |
|---|---|
| NaNO3 | 364.2 |
| Na2S2O3·5H2O(SND-SR系统) | 1062.6 |
| NaHCO3(SND-SR、GSDC-NRS系统) | 401.4 |
| C6H12O6(GNRS系统) | 385 |
| KH2PO4 | 19.8 |
| 样品 | OUTs | Ace | Chao | Coverage | Shannon | Simpson |
|---|---|---|---|---|---|---|
| Y_1 | 1181 | 1292.81 | 1261.06 | 0.996 | 5.30 | 0.01 |
| LT_a1 | 769 | 964.92 | 976.00 | 0.995 | 3.96 | 0.07 |
| LT_b1 | 560 | 695.95 | 673.62 | 0.996 | 3.07 | 0.18 |
| L_a1 | 1073 | 1187.00 | 1160.50 | 0.996 | 5.12 | 0.02 |
| L_b1 | 728 | 878.67 | 846.60 | 0.996 | 3.75 | 0.09 |
| T_a1 | 807 | 954.22 | 959.26 | 0.996 | 4.08 | 0.06 |
| T_b1 | 631 | 728.54 | 700.73 | 0.997 | 3.69 | 0.07 |
| 样品 | OUTs | Ace | Chao | Coverage | Shannon | Simpson |
|---|---|---|---|---|---|---|
| Y_1 | 1181 | 1292.81 | 1261.06 | 0.996 | 5.30 | 0.01 |
| LT_a1 | 769 | 964.92 | 976.00 | 0.995 | 3.96 | 0.07 |
| LT_b1 | 560 | 695.95 | 673.62 | 0.996 | 3.07 | 0.18 |
| L_a1 | 1073 | 1187.00 | 1160.50 | 0.996 | 5.12 | 0.02 |
| L_b1 | 728 | 878.67 | 846.60 | 0.996 | 3.75 | 0.09 |
| T_a1 | 807 | 954.22 | 959.26 | 0.996 | 4.08 | 0.06 |
| T_b1 | 631 | 728.54 | 700.73 | 0.997 | 3.69 | 0.07 |
| [1] | ZHAI Yuanzheng, LEI Yan, WU Jin, et al. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data[J]. Environmental Science and Pollution Research International, 2017, 24(4): 3640-3653. |
| [2] | DENG Yale, RUAN Yunjie, MA Bin, et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations[J]. Environment International, 2019, 132: 105085. |
| [3] | SU He, KANG Weidong, LI Yanrong, et al. Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287. |
| [4] | DENG Yuandong, YE Xueyan, DU Xinqiang. Predictive modeling and analysis of key drivers of groundwater nitrate pollution based on machine learning[J]. Journal of Hydrology, 2023, 624: 129934. |
| [5] | WARD Mary H, JONES Rena R, BRENDER Jean D, et al. Drinking water nitrate and human health: An updated review[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1557. |
| [6] | SONG Wen, GAO Baoyu, XU Xing, et al. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property[J]. Journal of Hazardous Materials, 2016, 304: 280-290. |
| [7] | EPSZTEIN Razi, Oded NIR, LAHAV Ori, et al. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme[J]. Chemical Engineering Journal, 2015, 279: 372-378. |
| [8] | 叶婷, 张光, 王珂, 等. 阴离子交换树脂生物再生去除硝酸盐氮[J]. 环境科学, 2018, 39(8): 3753-3758. |
| YE Ting, ZHANG Guang, WANG Ke, et al. Bioregeneration of anion exchange resin used in nitrate removal[J]. Environmental Science, 2018, 39(8): 3753-3758. | |
| [9] | 刘成, 张谦, 姜成浩, 等. 磁性树脂对地下水中硝酸盐的去除效能及影响因素[J]. 中国环境科学, 2014, 34(1): 65-71. |
| LIU Cheng, ZHANG Qian, JIANG Chenghao, et al. Performance and influencing factors of nitrate removed by magnetic resin from ground water[J]. China Environmental Science, 2014, 34(1): 65-71. | |
| [10] | 陈志华, 周键, 王三反. 固相反硝化在水污染治理中的研究进展[J]. 化工进展, 2021, 40(S1): 366-374. |
| CHEN Zhihua, ZHOU Jian, WANG Sanfan. Summary of solid phase denitrification in water pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 366-374. | |
| [11] | 李同燕, 李文奇, 胡伟武, 等. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. |
| LI Tongyan, LI Wenqi, HU Weiwu, et al. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. | |
| [12] | LIU Cheng, ZHU Lifei, ZHANG Qian, et al. Preparation of nitrate-selective porous magnetic resin and assessment of its performance in removing nitrate from groundwater[J]. Environmental Technology, 2017, 38(3): 231-238. |
| [13] | ZHAO Bei, SUN Zhanxue, LIU Yajie. An overview of in situ remediation for nitrate in groundwater[J]. Science of the Total Environment, 2022, 804: 149981. |
| [14] | LEE Da-won, Yongtae AHN, PANDI Kalimuthu, et al. Evaluation of natural attenuation-potential and biogeochemical analysis in nitrate contaminated bedrock aquifers by carbon source injection[J]. Science of the Total Environment, 2021, 780: 146459. |
| [15] | 赵静, 付昆明, 黄少伟, 等. 不同电子供体的部分自养反硝化研究进展[J]. 中国给水排水, 2023, 39(14): 19-26. |
| ZHAO Jing, FU Kunming, HUANG Shaowei, et al. Research progress of partial autotrophic denitrification with different electron donors[J]. China Water & Wastewater, 2023, 39(14): 19-26. | |
| [16] | 杨洁, 方芳, 陈玲珑, 等. 硫自养-异养协同反硝化技术的研究进展[J]. 应用化工, 2024, 53(6): 1377-1382. |
| YANG Jie, FANG Fang, CHEN Linglong, et al. Review of heterotrophic-sulfur autotrophic synergistic denitrification technology[J]. Applied Chemical Industry, 2024, 53(6): 1377-1382. | |
| [17] | 曹阳, 刘彩虹, 陈子惟, 等. 固相自养-异养反硝化脱氮同步去除微污染物[J]. 中国环境科学, 2024, 44(3): 1265-1277. |
| CAO Yang, LIU Caihong, CHEN Ziwei, et al. Solid phase autotrophic-heterotrophic denitrification and simultaneously removal of trace pollutants[J]. China Environmental Science, 2024, 44(3): 1265-1277. | |
| [18] | LI Rui, FENG Chuanping, HU Weiwu, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J]. Water Research, 2016, 89: 171-179. |
| [19] | SUN Qi, FANG Yingke, LIU Wenzong, et al. Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor[J]. Environmental Research, 2023, 231: 116047. |
| [20] | SAHINKAYA Erkan, KILIC Adem, CALIMLIOGLU Beste, et al. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process[J]. Journal of Hazardous Materials, 2013, 262: 234-239. |
| [21] | 中华人民共和卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法 总则: [S]. 北京: 中国标准出版社, 2007. |
| Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard examination methods for drinking water-General principles: [S]. Beijing: Standards Press of China, 2007. | |
| [22] | GAO Shuang, LI Zhiling, HOU Yanan, et al. Effects of different carbon sources on the efficiency of sulfur-oxidizing denitrifying microorganisms[J]. Environmental Research, 2022, 204: 111946. |
| [23] | LIU Chunshuang, ZHAO Dongfeng, MA Wenjuan, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1421-1426. |
| [24] | 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. |
| LI Xiang, MA Hang, HUANG Yong, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water[J]. Environmental Science, 2016, 37(7): 2646-2651. | |
| [25] | CHUNG Jinwook, AMIN Khurram, KIM Seungjin, et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014, 58: 169-178. |
| [26] | 袁莹, 周伟丽, 王晖, 等. 不同电子供体的硫自养反硝化脱氮实验研究[J]. 环境科学, 2013, 34(5): 1835-1844. |
| YUAN Ying, ZHOU Weili, WANG Hui, et al. Study on sulfur-based autotrophic denitrification with different electron donors[J]. Environmental Science, 2013, 34(5): 1835-1844. | |
| [27] | ZHU Tingting, CHENG Haoyi, YANG Lihui, et al. Coupled sulfur and iron(II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal[J]. Environmental Science & Technology, 2019, 53(3): 1545-1554. |
| [28] | 任星豪. 硫自养-异养协同反硝化处理低C/N废水效能及微生物特征研究[D]. 广州: 华南理工大学, 2023. |
| REN Xinghao. Study on the efficiency and microbial characteristics of sulfur autotrophic-heterotrophic synergistic denitrification in the treatment of low C/N wastewater[D]. Guangzhou: South China University of Technology, 2023. | |
| [29] | 马潇然, 郑照明, 卞伟, 等. 硫自养反硝化系统运行效能和微生物群落结构研究[J]. 中国环境科学, 2020, 40(10): 4335-4341. |
| MA Xiaoran, ZHENG Zhaoming, BIAN Wei, et al. Study on operation efficiency and microbial community structure of sulfur-based autotrophic denitrification system[J]. China Environmental Science, 2020, 40(10): 4335-4341. | |
| [30] | 李彭. 不同电子供体深度脱氮工艺及微生物群落特征研究[D]. 北京: 清华大学, 2014. |
| LI Peng. Study on advanced denitrification process and microbial community characteristics of different electron donors[D]. Beijing: Tsinghua University, 2014. | |
| [31] | 王伟, 赵中原, 张鑫, 等. 不同外碳源对尾水极限脱氮性能及微生物群落结构的影响[J]. 环境科学, 2022, 43(9): 4717-4726. |
| WANG Wei, ZHAO Zhongyuan, ZHANG Xin, et al. Effects of external carbon sources on ultimate nitrogen removal performance and microbial community in secondary effluent treating process[J]. Environmental Science, 2022, 43(9): 4717-4726. | |
| [32] | 马切切, 袁林江, 牛泽栋, 等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学, 2021, 42(8): 3886-3893. |
| MA Qieqie, YUAN Linjiang, NIU Zedong, et al. Microbial community structure of activated sludge and its response to environmental factors[J]. Environmental Science, 2021, 42(8): 3886-3893. | |
| [33] | WANG Hongyu, HE Qiulai, CHEN Dan, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10829-10837. |
| [34] | 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1166. |
| PENG Yongzhen, WANG Mingqi, PENG Yi, et al. Effect of four different types of carbon sources on advanced nitrogen removal of secondary effluent: System performance and microbial communities[J]. Journal of Beijing University of Technology, 2021, 47(10): 1158-1166. | |
| [35] | ASIK Gulfem, YILMAZ Tulay, DI CAPUA Francesco, et al. Sequential sulfur-based denitrification/denitritation and nanofiltration processes for drinking water treatment[J]. Journal of Environmental Management, 2021, 295: 113083. |
| [36] | ZHOU Ya, Wenning MAI, DAI Jihua, et al. Study on autotrophic denitrification performance of sodium thiosulfate combined with pyrite system[J]. China Environmental Science, 2020,40(5):2081-2086. |
| [37] | MA Wencheng, ZHOU Dapeng, ZHONG Dan, et al. Study of nitrogen removal efficiency of the filled bed reactors using alkali-treated corncobs-sulfur (mixotrophic) for treating the effluent from simulated urban wastewater plants[J]. Bioresource Technology, 2022, 349: 126630. |
| [38] | ZHANG Quan, XU Xijun, ZHANG Ruochen, et al. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism[J]. Water Research, 2022, 226: 119269. |
| [39] | XUE Zhaoxia, ZHANG Teng, SUN Yiwen, et al. Integrated moving bed biofilm reactor with partial denitrification-anammox for promoted nitrogen removal: Layered biofilm structure formation and symbiotic functional microbes[J]. Science of the Total Environment, 2022, 839: 156339. |
| [40] | 陈鑫童, 郝庆菊, 熊艳芳, 等. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 2022, 43(3): 1492-1499. |
| CHEN Xintong, HAO Qingju, XIONG Yanfang, et al. Effects of hematite and biochar addition on wastewater treatment efficiency, greenhouse gas emission, and microbial community in subsurface flow constructed wetland[J]. Environmental Science, 2022, 43(3): 1492-1499. | |
| [41] | 耿雅雯, 刘锋, 冯震, 等. 硫自养/异养协同反硝化深度脱氮处理三氯蔗糖生产废水[J]. 化工进展, 2021, 40(10): 5829-5836. |
| GENG Yawen, LIU Feng, FENG Zhen, et al. Deep treatment of sucralose wastewater with sulfur autotrophic/heterotrophic synergistic denitrification[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5829-5836. | |
| [42] | SUN Shanshan, LIU Jie, ZHANG Manping, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission[J]. Bioresource Technology, 2020, 300: 122651. |
| [43] | XIAO Wanting, XU Guoren, LI Guibai. Role of shear stress in biological aerated filter with nanobubble aeration: Performance, biofilm structure and microbial community[J]. Bioresource Technology, 2021, 325: 124714. |
| [44] | KAPPLER Ulrike, BENNETT Brian, Jörg RETHMEIER, et al. Sulfite: Cytochrome c Oxidoreductase fromThiobacillus novellus purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family[J]. Journal of Biological Chemistry, 2000, 275(18): 13202-13212. |
| [45] | TAKEUCHI T L, SUZUKI I. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate[J]. Journal of Bacteriology, 1994, 176(3): 913-916. |
| [46] | KAPPLER Ulrike, DAHL Christiane. Enzymology and molecular biology of prokaryotic sulfite oxidation[J]. FEMS Microbiology Letters, 2001, 203(1): 1-9. |
| [47] | ROHWERDER Thore, SAND Wolfgang. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology, 2003, 149(Pt 7): 1699-1710. |
| [48] | 吕小梅, 吴毅聪, 陈桂连, 等. 硫自养反硝化颗粒表面与间隙微生物群落特征和基因分布[J]. 中国环境科学, 2022, 42(6): 2764-2770. |
| Xiaomei LYU, WU Yicong, CHEN Guilian, et al. Community structure and gene distribution of the surface and interstitial biofilm in the particle sulfur autotrophic denitrification[J]. China Environmental Science, 2022, 42(6): 2764-2770. |
| [1] | XUE Jialin, LI Wenxuan, WU Xintong, WANG Xuechao, WANG Kexin, XIE Huina, LI Jie. Research progress on iron-based autotrophic biological denitrification technology [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 504-517. |
| [2] | WANG Hao, LI Mengqi, WANG Qingji, WANG Lingyun, LUO Zhen, SONG Quanwei, LI Xingchun, HE Xuwen. Short-process treatment technology for ex-situ remediation of groundwater in oil-contaminated sites [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5491-5502. |
| [3] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [4] | XU Jingdong, LIU Ben, WANG Xueqin, DONG Peng, XI Zhixiang, XU Renwei, YUE Yuanyuan. Green synthesis and NH3-SCR performance of FeCu-ZSM-5 zeolite [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3017-3030. |
| [5] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [6] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [7] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [8] | DONG Jie, LIU Bo, YANG Yanfei, NAN Xueli, ZHANG Junping. Design of anti-hygroscopic properties of oxidizer materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1445-1453. |
| [9] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
| [10] | JIANG Huayi, GUO Zhijie, LIANG Aiguo, LIU Dongdong, JU Yiyi, ZHU Qiubo, YU Qian. Synergic influence of magnetic field and material on dynamic growth of calcium carbonate crystals [J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7045-7056. |
| [11] | LI Shupeng, DU Xueyuan, LI Fei, GUO Lili, LI Guanghe. Research development of reductive materials for remediation of groundwater contaminated by halogenated solvents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 500-512. |
| [12] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
| [13] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
| [14] | LIU Yifei, GUO Xiaobin, CHENG Zikun, JIANG Bo. Resource extraction of nitrate in water based on resin enrichment-electrocatalytic reduction-membrane stripping synergy system [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7042-7048. |
| [15] | SUN Wujuan, LI Qian, LI Xiaoling, SHI Huaqiang, YANG Zhicheng, KE Congyu, WANG Sichang, ZHANG Qunzheng. Construction of an efficient microbial community for petroleum hydrocarbon degradation and its remediation performance for oily soil [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6468-6474. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |