Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6488-6496.DOI: 10.16085/j.issn.1000-6613.2024-1543
• Materials science and technology • Previous Articles
XU Yunhui1(
), WANG Shifeng2, ZAHEER Ul Haq2, LI Junrong3, TU Hui1
Received:2024-09-23
Revised:2024-10-24
Online:2025-12-08
Published:2025-11-25
Contact:
XU Yunhui
徐云慧1(
), 王仕峰2, ZAHEER Ul Haq2, 李俊荣3, 涂辉1
通讯作者:
徐云慧
作者简介:徐云慧(1973—),女,教授,博士,研究方向为橡胶绿色循环利用技术及功能橡胶制备及高值化利用。E-mail:1255606218@qq.com。
基金资助:CLC Number:
XU Yunhui, WANG Shifeng, ZAHEER Ul Haq, LI Junrong, TU Hui. Preparation and properties of RGTR/SMR/BR composites for solid tire core rubber[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6488-6496.
徐云慧, 王仕峰, ZAHEER Ul Haq, 李俊荣, 涂辉. 实心轮胎胎芯胶用RGTR/SMR/BR复合材料的制备与性能[J]. 化工进展, 2025, 44(11): 6488-6496.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1543
| 门尼黏度 | 溶胶质量分数/% | 凝胶质量分数/% | 拉伸强度/MPa | 扯断伸长率/% |
|---|---|---|---|---|
| 40.8~42.5 | 41.7~45 | 19~22.3 | 7~8 | 200~220 |
| 门尼黏度 | 溶胶质量分数/% | 凝胶质量分数/% | 拉伸强度/MPa | 扯断伸长率/% |
|---|---|---|---|---|
| 40.8~42.5 | 41.7~45 | 19~22.3 | 7~8 | 200~220 |
| 测试类别 | 项目 | 实测值 | 方法检出限/mg·kg-1 | 标准 | 单位 | 结论 | 备注 |
|---|---|---|---|---|---|---|---|
| 化学成分检测 | 加热减量 | 0.8 | — | 1 | % | 符合 | |
| 灰分 | 9.1 | — | 10 | % | 符合 | ||
| 丙酮抽出物 | 6.7 | — | 18 | % | 符合 | ||
| 欧盟RoHS指令检测 | 铅(Pb) | 62 | 2 | ≤1000 | mg/kg | 符合 | |
| 镉(Cd) | N.D. | 2 | ≤100 | mg/kg | 符合 | ||
| 汞(Hg) | N.D. | 2 | ≤1000 | mg/kg | 符合 | ||
| 六价铬[Cr(Ⅵ)] | N.D. | 2 | ≤1000 | mg/kg | 符合 | ||
| 多溴联苯之和(PBB) | N.D. | — | ≤1000 | mg/kg | 符合 | 为一溴联苯至十联苯每项方法检出限为5mg/kg | |
| 多溴联苯醚之和(PBDE) | N.D. | — | ≤1000 | mg/kg | 符合 | 为一溴联苯醚至十联苯醚每项方法检出限为5mg/kg | |
| 邻苯二甲酸二丁酯(DBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸丁酯苄酯(BBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸二(2-乙基己基)酯(DEHP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸二异丁酯(DIBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 高关注度物质(SVHC)检测 | 萘 | 0.278 | 高关注度物质在再生胶中的质量比小于0.1% | mg/kg | 符合 | 质量之和为 53.719mg/kg,<1000mg/kg | |
| 苊烯 | — | mg/kg | |||||
| 苊 | — | mg/kg | |||||
| 芴 | — | mg/kg | |||||
| 菲 | 5.58 | mg/kg | |||||
| 蒽 | 0.501 | mg/kg | |||||
| 荧蒽 | 7.8 | mg/kg | |||||
| 芘 | 29 | mg/kg | |||||
| 苯并(a)蒽 | N.D. | mg/kg | |||||
| 䓛 | 5.48 | mg/kg | |||||
| 苯并(b)荧蒽 | 2.32 | mg/kg | |||||
| 苯并(k)荧蒽 | N.D. | mg/kg | |||||
| 苯并(a)芘 | N.D. | mg/kg | |||||
| 茚并(1,2,3-cd)芘 | N.D. | mg/kg | |||||
| 二苯并(a,h)蒽 | N.D. | mg/kg | |||||
| 苯并(g,h,i)二萘嵌苯 | 2.76 | mg/kg | |||||
| 16项PAH总和 | 0.00537 | 0.1 | % | 符合 |
| 测试类别 | 项目 | 实测值 | 方法检出限/mg·kg-1 | 标准 | 单位 | 结论 | 备注 |
|---|---|---|---|---|---|---|---|
| 化学成分检测 | 加热减量 | 0.8 | — | 1 | % | 符合 | |
| 灰分 | 9.1 | — | 10 | % | 符合 | ||
| 丙酮抽出物 | 6.7 | — | 18 | % | 符合 | ||
| 欧盟RoHS指令检测 | 铅(Pb) | 62 | 2 | ≤1000 | mg/kg | 符合 | |
| 镉(Cd) | N.D. | 2 | ≤100 | mg/kg | 符合 | ||
| 汞(Hg) | N.D. | 2 | ≤1000 | mg/kg | 符合 | ||
| 六价铬[Cr(Ⅵ)] | N.D. | 2 | ≤1000 | mg/kg | 符合 | ||
| 多溴联苯之和(PBB) | N.D. | — | ≤1000 | mg/kg | 符合 | 为一溴联苯至十联苯每项方法检出限为5mg/kg | |
| 多溴联苯醚之和(PBDE) | N.D. | — | ≤1000 | mg/kg | 符合 | 为一溴联苯醚至十联苯醚每项方法检出限为5mg/kg | |
| 邻苯二甲酸二丁酯(DBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸丁酯苄酯(BBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸二(2-乙基己基)酯(DEHP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 邻苯二甲酸二异丁酯(DIBP) | N.D. | 30 | ≤1000 | mg/kg | 符合 | ||
| 高关注度物质(SVHC)检测 | 萘 | 0.278 | 高关注度物质在再生胶中的质量比小于0.1% | mg/kg | 符合 | 质量之和为 53.719mg/kg,<1000mg/kg | |
| 苊烯 | — | mg/kg | |||||
| 苊 | — | mg/kg | |||||
| 芴 | — | mg/kg | |||||
| 菲 | 5.58 | mg/kg | |||||
| 蒽 | 0.501 | mg/kg | |||||
| 荧蒽 | 7.8 | mg/kg | |||||
| 芘 | 29 | mg/kg | |||||
| 苯并(a)蒽 | N.D. | mg/kg | |||||
| 䓛 | 5.48 | mg/kg | |||||
| 苯并(b)荧蒽 | 2.32 | mg/kg | |||||
| 苯并(k)荧蒽 | N.D. | mg/kg | |||||
| 苯并(a)芘 | N.D. | mg/kg | |||||
| 茚并(1,2,3-cd)芘 | N.D. | mg/kg | |||||
| 二苯并(a,h)蒽 | N.D. | mg/kg | |||||
| 苯并(g,h,i)二萘嵌苯 | 2.76 | mg/kg | |||||
| 16项PAH总和 | 0.00537 | 0.1 | % | 符合 |
| 配方 | Max.Mooney | MV Mooney |
|---|---|---|
| 1# | 52.98 | 40.23 |
| 2# | 49.17 | 31.30 |
| 3# | 46.82 | 31.19 |
| 4# | 48.51 | 31.09 |
| 5# | 52.51 | 31.95 |
| 6# | 53.25 | 32.22 |
| 7# | 49.91 | 31.55 |
| 8# | 50.89 | 31.38 |
| 9# | 52.50 | 31.48 |
| 10# | 52.84 | 31.43 |
| 11# | 53.63 | 31.08 |
| 配方 | Max.Mooney | MV Mooney |
|---|---|---|
| 1# | 52.98 | 40.23 |
| 2# | 49.17 | 31.30 |
| 3# | 46.82 | 31.19 |
| 4# | 48.51 | 31.09 |
| 5# | 52.51 | 31.95 |
| 6# | 53.25 | 32.22 |
| 7# | 49.91 | 31.55 |
| 8# | 50.89 | 31.38 |
| 9# | 52.50 | 31.48 |
| 10# | 52.84 | 31.43 |
| 11# | 53.63 | 31.08 |
| 配方 | ML/dN·m | MH/dN·m | (MH-ML)/dN·m | t10/s | t90/s | t100/s |
|---|---|---|---|---|---|---|
| 1# | 1.11 | 13.73 | 12.62 | 68 | 195 | 599 |
| 2# | 1.10 | 13.63 | 12.53 | 55 | 168 | 559 |
| 3# | 1.08 | 13.51 | 12.43 | 52 | 167 | 532 |
| 4# | 1.08 | 14.12 | 13.07 | 43 | 150 | 409 |
| 5# | 1.15 | 13.22 | 12.04 | 44 | 146 | 397 |
| 6# | 1.15 | 11.86 | 10.71 | 47 | 146 | 357 |
| 7# | 1.16 | 11.92 | 10.76 | 46 | 150 | 324 |
| 8# | 1.14 | 10.16 | 9.02 | 46 | 158 | 360 |
| 9# | 1.18 | 9.23 | 8.05 | 46 | 170 | 377 |
| 10# | 1.16 | 9.09 | 7.93 | 46 | 178 | 393 |
| 11# | 1.08 | 7.65 | 6.57 | 47 | 180 | 406 |
| 配方 | ML/dN·m | MH/dN·m | (MH-ML)/dN·m | t10/s | t90/s | t100/s |
|---|---|---|---|---|---|---|
| 1# | 1.11 | 13.73 | 12.62 | 68 | 195 | 599 |
| 2# | 1.10 | 13.63 | 12.53 | 55 | 168 | 559 |
| 3# | 1.08 | 13.51 | 12.43 | 52 | 167 | 532 |
| 4# | 1.08 | 14.12 | 13.07 | 43 | 150 | 409 |
| 5# | 1.15 | 13.22 | 12.04 | 44 | 146 | 397 |
| 6# | 1.15 | 11.86 | 10.71 | 47 | 146 | 357 |
| 7# | 1.16 | 11.92 | 10.76 | 46 | 150 | 324 |
| 8# | 1.14 | 10.16 | 9.02 | 46 | 158 | 360 |
| 9# | 1.18 | 9.23 | 8.05 | 46 | 170 | 377 |
| 10# | 1.16 | 9.09 | 7.93 | 46 | 178 | 393 |
| 11# | 1.08 | 7.65 | 6.57 | 47 | 180 | 406 |
| 配方 | 回弹性/% |
|---|---|
| 1# | 36.5 |
| 2# | 35.5 |
| 3# | 35 |
| 4# | 33 |
| 5# | 32 |
| 6# | 30 |
| 7# | 26 |
| 8# | 27 |
| 9# | 28 |
| 10# | 26 |
| 11# | 27 |
| 配方 | 回弹性/% |
|---|---|
| 1# | 36.5 |
| 2# | 35.5 |
| 3# | 35 |
| 4# | 33 |
| 5# | 32 |
| 6# | 30 |
| 7# | 26 |
| 8# | 27 |
| 9# | 28 |
| 10# | 26 |
| 11# | 27 |
| 测试项目 | 1# | 2# | 3# | 4# | 5# | 6# | 7# | 8# | 9# | 10# | 11# |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 硬度 | 66 | 65 | 65 | 67 | 65 | 65 | 64 | 62 | 63 | 61 | 60 |
| 老化后硬度 | 69 | 67 | 69 | 71 | 71 | 71 | 72 | 71 | 72 | 73 | 72 |
| 老化前后硬度差 | 3 | 2 | 4 | 4 | 6 | 6 | 8 | 9 | 9 | 12 | 12 |
| 拉伸强度/MPa | 18.82 | 16.82 | 16.99 | 16.75 | 16.58 | 14.66 | 14.42 | 13.42 | 12.49 | 12.17 | 10.75 |
| 老化后拉伸强度/MPa | 10.34 | 10.50 | 10.80 | 8.77 | 9.75 | 8.68 | 8.29 | 8.31 | 8.04 | 7.09 | 6.74 |
| 老化系数/% | -45 | -38 | -37 | -43 | -38 | -41 | -46 | -38 | -36 | -42 | -37 |
| 扯断伸长率/% | 451.8 | 437 | 448 | 446 | 436 | 439 | 395 | 316 | 425 | 438 | 324 |
| 老化后扯断伸率/% | 212.4 | 229 | 233 | 152 | 187 | 165 | 159 | 180 | 190 | 158 | 192 |
| 老化系数/% | -53 | -47 | -48 | -58 | -58 | -62 | -60 | -57 | -55 | -64 | -55 |
| 300%定伸应力/MPa | 11.60 | 10.48 | 10.72 | 12.73 | 10.44 | 10.48 | 9.60 | 9.54 | 8.48 | 8.15 | 7.53 |
| 扯断永久变形率/% | 40 | 24 | 24 | 16 | 20 | 24 | 28 | 32 | 24 | 32 | 24 |
| 测试项目 | 1# | 2# | 3# | 4# | 5# | 6# | 7# | 8# | 9# | 10# | 11# |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 硬度 | 66 | 65 | 65 | 67 | 65 | 65 | 64 | 62 | 63 | 61 | 60 |
| 老化后硬度 | 69 | 67 | 69 | 71 | 71 | 71 | 72 | 71 | 72 | 73 | 72 |
| 老化前后硬度差 | 3 | 2 | 4 | 4 | 6 | 6 | 8 | 9 | 9 | 12 | 12 |
| 拉伸强度/MPa | 18.82 | 16.82 | 16.99 | 16.75 | 16.58 | 14.66 | 14.42 | 13.42 | 12.49 | 12.17 | 10.75 |
| 老化后拉伸强度/MPa | 10.34 | 10.50 | 10.80 | 8.77 | 9.75 | 8.68 | 8.29 | 8.31 | 8.04 | 7.09 | 6.74 |
| 老化系数/% | -45 | -38 | -37 | -43 | -38 | -41 | -46 | -38 | -36 | -42 | -37 |
| 扯断伸长率/% | 451.8 | 437 | 448 | 446 | 436 | 439 | 395 | 316 | 425 | 438 | 324 |
| 老化后扯断伸率/% | 212.4 | 229 | 233 | 152 | 187 | 165 | 159 | 180 | 190 | 158 | 192 |
| 老化系数/% | -53 | -47 | -48 | -58 | -58 | -62 | -60 | -57 | -55 | -64 | -55 |
| 300%定伸应力/MPa | 11.60 | 10.48 | 10.72 | 12.73 | 10.44 | 10.48 | 9.60 | 9.54 | 8.48 | 8.15 | 7.53 |
| 扯断永久变形率/% | 40 | 24 | 24 | 16 | 20 | 24 | 28 | 32 | 24 | 32 | 24 |
| [1] | 刘显贞, 顾兆磊, 李慧, 等. 液体再生胶在输送带覆盖胶中的应用[J]. 弹性体, 2024, 34(1): 50-56. |
| LIU Xianzhen, GU Zhaolei, LI Hui, et al. Application of liquid reclaimed rubber in covering rubber of conveyor belt[J]. China Elastomerics, 2024, 34(1): 50-56. | |
| [2] | 骆岐明, 王小萍, 贾德民. 胶粉的改性及其在热塑性弹性体中的应用[J]. 高分子通报, 2022 (2): 10-16. |
| LUO Qiming, WANG Xiaoping, JIA Demin. Modification of rubber powder and its application in thermoplastic elastomer[J]. Polymer Bulletin, 2022(2): 10-16. | |
| [3] | 赵庆镇. 具有微纳结构的再生胶在轮胎橡胶中的应用[D]. 青岛: 青岛科技大学, 2023. |
| ZHAO Qingzhen. Application of reclaimed rubber with micro-nano structure in tire rubber[D]. Qingdao: Qingdao University of Science & Technology, 2023. | |
| [4] | MA Lan, ZHANG Zhen, PENG Zonglin, et al. Dynamic mechanical properties and flexing fatigue resistance of tire sidewall rubber as function of waste tire rubber reclaiming degree[J]. Journal of Applied Polymer Science, 2021, 138(44): 51290. |
| [5] | 张小萍, 韦帮风, 张航天, 等. 超声波脱硫新工艺制备轮胎胶粉再生胶及其性能研究[J]. 橡塑技术与装备, 2023, 49(6): 18-23. |
| ZHANG Xiaoping, WEI Bangfeng, ZHANG Hangtian, et al. Preparation of tire rubber powder recycled rubber by a new process of ultrasonic desulfurization and its performance study[J]. China Rubber/Plastics Technology and Equipment, 2023, 49(6): 18-23. | |
| [6] | 马澜, 张震, 彭宗林, 等. 微纳再生胶在轮胎胎侧胶中的应用[J]. 合成橡胶工业, 2022, 45(1): 65-68. |
| MA Lan, ZHANG Zhen, PENG Zonglin, et al. Application of micro-nano reclaimed rubber in tire sidewall rubber[J]. China Synthetic Rubber Industry, 2022, 45(1): 65-68. | |
| [7] | 吴晓羽. 轮胎橡胶浅度裂解机理的研究[D]. 上海: 上海交通大学, 2017. |
| WU Xiaoyu. Study on shallow cracking mechanism of tire rubber[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| [8] | 赵庆镇, 谢斌, 徐云慧, 等. 微氧再生胶在工程轮胎胎侧胶中的应用[J]. 弹性体, 2023, 33(2): 57-64. |
| ZHAO Qingzhen, XIE Bin, XU Yunhui, et al. Application of micro-oxygen reclaimed rubber in OTR tire sidewall[J]. China Elastomerics, 2023, 33(2): 57-64. | |
| [9] | 张小萍, ISAYEV Isayevich Avraam, 侯亚合, 等. 螺杆结构对轮胎胶粉超声波脱硫工艺及性能的影响[J]. 合成橡胶工业, 2023, 46(2): 124-129. |
| ZHANG Xiaoping, ISAYEV Isayevich Avraam, HOU Yahe, et al. Effect of screw structure on ultrasonic desulfurization process and performance of ground tire rubber[J]. China Synthetic Rubber Industry, 2023, 46(2): 124-129. | |
| [10] | 徐文龙, 宫亭亭, 邱海强, 等. 废旧轮胎再生胶在轿车子午线轮胎胎侧胶中的应用[J]. 轮胎工业, 2023, 43(1): 23-25. |
| XU Wenlong, GONG Tingting, QIU Haiqiang, et al. Application of reclaimed rubber from waste tires in sidewall compound of passenger car radial tire[J]. China Tire Industry, 2023, 43(1): 23-25. | |
| [11] | 张小萍, ISAYEVICH Avraam Isayev, 丛后罗, 等. 超声波振幅对轮胎胶粉超声脱硫工艺及性能的影响[J]. 合成橡胶工业, 2022, 45(3): 201-206. |
| ZHANG Xiaoping, ISAYEV Isayevich Avraam, CONG Houluo, et al. Effect of ultrasonic amplitude on ultrasonic desulfurization process and performance of ground tire rubber[J]. China Synthetic Rubber Industry, 2022, 45(3): 201-206. | |
| [12] | 李元敬, 苟登峰. 实心轮胎变温硫化工艺的研究[J]. 轮胎工业, 2022, 42(2): 113-116. |
| LI Yuanjing, GOU Dengfeng. Study on variable temperature vulcanization process for solid tire[J]. Tire Industry, 2022, 42(2): 113-116. | |
| [13] | 游志生, 睢安全. 轻质碳酸钙在充气轮胎轮辋实心轮胎胎芯胶中的应用[J]. 轮胎工业, 2012, 32(3): 160-162. |
| YOU Zhisheng, SUI Anquan. Application of light calcium carbonate in core rubber of solid tire for pneumatic tire rim[J]. Tire Industry, 2012, 32(3): 160-162. | |
| [14] | 王克成, 罗威. 模量增强剂HMZ在实心轮胎胎芯胶中的应用[J]. 橡胶科技, 2020, 18(6): 325-328. |
| WANG Kecheng, LUO Wei. Application of modulus enhancer HMZ in core compound of solid tire[J]. Rubber Science and Technology, 2020, 18(6): 325-328. | |
| [15] | 翁国文, 刘琼琼. 橡胶物理机械性能测试[M]. 北京: 化学工业出版社, 2018. |
| WENG Guowen, LIU Qiongqiong. Physical and mechanical properties test of rubber[M]. Beijing: Chemical Industry Press, 2018. | |
| [16] | 徐聪, 郑鹏, 韩佳赤, 等. 软质炭黑并用在内胎再生胶中增强作用的比较[J]. 弹性体, 2021, 31(6): 23-27. |
| XU Cong, ZHENG Peng, HAN Jiachi, et al. Comparison of reinforcing effect of carbon black N550/N660 blend in RIIR/IIR/EPDM/capsule recycled rubber[J]. China Elastomerics, 2021, 31(6): 23-27. | |
| [17] | FORMELA Krzysztof, CYSEWSKA Magdalena, HAPONIUK Józef T. Thermomechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits[J]. Journal of Vinyl and Additive Technology, 2016, 22(3): 213-221. |
| [18] | 窦疏威, 许宗超, 孙崇志, 等. 水滑石对轮胎胎侧橡胶复合材料微观形貌与性能的影响[J]. 合成橡胶工业, 2022, 45(4): 285-288. |
| DOU Shuwei, XU Zongchao, SUN Chongzhi, et al. Effect of layered double hydroxide on micro morphology and properties of tire sidewall rubber composites[J]. China Synthetic Rubber Industry, 2022, 45(4): 285-288. |
| [1] | YANG Yusong, TANG Jian, LI Yin, YANG Bin, ZHANG Keyu, ZHANG Shaoze, YAO Yaochun, HU Junxian. Advances in research on the influence factors of microstructure and mechanical properties of electrolytic copper foil [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5043-5054. |
| [2] | WU Yali, ZHANG Xiaolin, GAO Limin, HUANG Maocai, CAI Bin, ZHANG Jibing. Technical progress in resource utilization of straw powder/fiber [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3509-3523. |
| [3] | XUE Bingfeng, ZHANG Ye, ZHANG Shiyuan, FU Peng, CUI Zhe, ZHANG Yuancheng, LI Xin, PANG Xinchang, ZHAO Wei, ZHANG Xiaomeng, LIU Minying. Preparation and characterization of polyamide PA12T by direct solid state polymerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1559-1569. |
| [4] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| [5] | FENG Wanqi, YANG Cuiping, HAO Junyao, NI Hongmei, ZHAO Jianbo. Preparation and properties of wood-plastic composites based on extract of cotton spinning black liquor [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1768-1775. |
| [6] | ZHANG Yuhan, ZHAO Xuesong, WU Xiulin, ZHANG Ting, YANG Longfeng. Preparation and molecular dynamics simulation of nano kaolin/epoxy resin composites [J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6477-6487. |
| [7] | WAN Lixiang, CUI Jinfeng, GUO Junhong, BAO Xuemei, YANG Baoping. Preparation and properties of polyamic acid-polyurethane block copolymers and thermoimide elastomers [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 398-406. |
| [8] | WANG Xiangpeng, ZHENG Yunxiang, ZHANG Chunxiao, CHEN Chunmao. Preparation and application of carbon dots hybrid hydrogels [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 305-318. |
| [9] | GAO Jixing, DING Yumei, ZHANG Chao, TAN Jing, DING Xi, LI Haoyi, YANG Weimin. Preparation and properties of PLA/PCL micro-nano fiber membrane by melt differential electrospinning [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 457-468. |
| [10] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
| [11] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
| [12] | WANG Yuzhou, CHEN Zeng, CAO Dongxin, ZHOU Jiehui, AN Xu, MA Tianqi. Effect of nano-CaCO3 on structure and properties of nano-CaCO3/PES composite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6310-6316. |
| [13] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
| [14] | LIU Dachen, DU Minghui, WANG Heng. Bromination modification of phenolic hydroxyl sites of crosslinked teroctyl phenolic resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 382-388. |
| [15] | TIAN Yazhou, HU Yujing, LI Jiyou, REN Jiangyan, WANG Liwei, WANG Xiuli, DING Ying, CHENG Jue, ZHANG Junying. Synthesis, curing kinetics and properties of vanilla alcohol-based epoxy resin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 477-484. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |