Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5640-5651.DOI: 10.16085/j.issn.1000-6613.2024-1493
• Chemical processes and equipment • Previous Articles
LI Ke1(
), ZHU Shun1, WEN Jian1(
), WANG Simin2
Received:2024-09-10
Revised:2024-11-15
Online:2025-11-10
Published:2025-10-25
Contact:
WEN Jian
通讯作者:
文键
作者简介:李科(1992—),男,助理教授,研究方向为低温紧凑式换热器。E-mail:vincent_lee@xjtu.edu.cn。
基金资助:CLC Number:
LI Ke, ZHU Shun, WEN Jian, WANG Simin. Effect of inlet flow maldistribution on performance of plate fin heat exchanger coupled with hydrogen ortho-para catalytic conversion[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5640-5651.
李科, 朱顺, 文键, 王斯民. 入口流动不均对耦合氢正仲催化转化板翅式换热器性能的影响[J]. 化工进展, 2025, 44(10): 5640-5651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1493
| 固体材料 | 翅片类型 | 芯体长度L/mm | 芯体宽度W/mm | 隔板厚度/mm | t/mm | h/mm | l/mm | s/mm |
|---|---|---|---|---|---|---|---|---|
| 铝3003 | 锯齿翅片 | 1335 | 300 | 0.8 | 0.2 | 3.8 | 3 | 1.5 |
| 固体材料 | 翅片类型 | 芯体长度L/mm | 芯体宽度W/mm | 隔板厚度/mm | t/mm | h/mm | l/mm | s/mm |
|---|---|---|---|---|---|---|---|---|
| 铝3003 | 锯齿翅片 | 1335 | 300 | 0.8 | 0.2 | 3.8 | 3 | 1.5 |
| 模式 | 流体编号 | 质量流量/g·s-1 | 入口温度Tin/K | 入口压力pin/MPa | 流动方向 | 总层数 | 排布方式 |
|---|---|---|---|---|---|---|---|
| 制冷模式[ | 1(HP He) | 15.1 | 44.2 | 1.273 | +x | 6 | 232321232321 |
| 2(LP He) | 57.7 | 10.3 | 0.155 | -x | 20 | 232321232321 | |
| 3(MP He) | 42.6 | 45.8 | 0.561 | +x | 13 | 232123232123232 | |
| 液化模式[ | 1(HP He) | 6.8 | 50.9 | 1.246 | +x | 6 | 232321232321 |
| 2(LP He) | 51.9 | 11.6 | 0.157 | -x | 20 | 232321232321 | |
| 3(MP He) | 46.2 | 52.1 | 0.639 | +x | 13 | 232123232123232 |
| 模式 | 流体编号 | 质量流量/g·s-1 | 入口温度Tin/K | 入口压力pin/MPa | 流动方向 | 总层数 | 排布方式 |
|---|---|---|---|---|---|---|---|
| 制冷模式[ | 1(HP He) | 15.1 | 44.2 | 1.273 | +x | 6 | 232321232321 |
| 2(LP He) | 57.7 | 10.3 | 0.155 | -x | 20 | 232321232321 | |
| 3(MP He) | 42.6 | 45.8 | 0.561 | +x | 13 | 232123232123232 | |
| 液化模式[ | 1(HP He) | 6.8 | 50.9 | 1.246 | +x | 6 | 232321232321 |
| 2(LP He) | 51.9 | 11.6 | 0.157 | -x | 20 | 232321232321 | |
| 3(MP He) | 46.2 | 52.1 | 0.639 | +x | 13 | 232123232123232 |
| Tout/K | 制冷模式[ | 液化模式[ | ||||
|---|---|---|---|---|---|---|
| Tout,exp/K | Tout,cal/K | 偏差/K | Tout,exp/K | Tout,cal/K | 偏差/K | |
| Tout1 | 12.5 | 12.6 | 0.1 | 13.3 | 13.8 | 0.5 |
| Tout2 | 44.4 | 44.2 | 0.2 | 14.9 | 14.5 | 0.4 |
| Tout3 | 13.1 | 12.7 | 0.4 | 51.1 | 50.9 | 0.2 |
| Tout/K | 制冷模式[ | 液化模式[ | ||||
|---|---|---|---|---|---|---|
| Tout,exp/K | Tout,cal/K | 偏差/K | Tout,exp/K | Tout,cal/K | 偏差/K | |
| Tout1 | 12.5 | 12.6 | 0.1 | 13.3 | 13.8 | 0.5 |
| Tout2 | 44.4 | 44.2 | 0.2 | 14.9 | 14.5 | 0.4 |
| Tout3 | 13.1 | 12.7 | 0.4 | 51.1 | 50.9 | 0.2 |
| 流体 | 翅片类型 | 翅片高度/mm | 翅片间距/mm | 翅片厚度/mm | 节距/mm | 长度和宽度/mm | 排布方式 |
|---|---|---|---|---|---|---|---|
| A | 穿孔翅片 | 6.0 | 1.5 | 0.3 | 0.05 | 1000, 500 | CBC, BCA, CBC, ACB, CAC, BCB, CAC, BCA, CBC, BCA, CBC, BCA, CBC, BCA, CBC, ACB, CAC, BCB, CAC, BCA, CBC, BCA, CBC, BCA, CBC, ACB, CBC |
| B | 锯齿翅片 | 9.5 | 1.2 | 0.3 | 3 | ||
| C | 锯齿翅片 | 4.7 | 1.4 | 0.2 | 3 |
| 流体 | 翅片类型 | 翅片高度/mm | 翅片间距/mm | 翅片厚度/mm | 节距/mm | 长度和宽度/mm | 排布方式 |
|---|---|---|---|---|---|---|---|
| A | 穿孔翅片 | 6.0 | 1.5 | 0.3 | 0.05 | 1000, 500 | CBC, BCA, CBC, ACB, CAC, BCB, CAC, BCA, CBC, BCA, CBC, BCA, CBC, BCA, CBC, ACB, CAC, BCB, CAC, BCA, CBC, BCA, CBC, BCA, CBC, ACB, CBC |
| B | 锯齿翅片 | 9.5 | 1.2 | 0.3 | 3 | ||
| C | 锯齿翅片 | 4.7 | 1.4 | 0.2 | 3 |
| 流体 | 工作介质 | 进口温度/K | 进口压力/MPa | 质量流量/kg·s-1 | 流动方向 | 进口仲氢质量分数 |
|---|---|---|---|---|---|---|
| A | 氢气 | 45.0 | 2.3 | 0.072 | +x | 0.73 |
| B | 氦气 | 45.0 | 2.0 | 0.778 | +x | — |
| C | 氦气 | 21.5 | 0.43 | 1.100 | -x | — |
| 流体 | 工作介质 | 进口温度/K | 进口压力/MPa | 质量流量/kg·s-1 | 流动方向 | 进口仲氢质量分数 |
|---|---|---|---|---|---|---|
| A | 氢气 | 45.0 | 2.3 | 0.072 | +x | 0.73 |
| B | 氦气 | 45.0 | 2.0 | 0.778 | +x | — |
| C | 氦气 | 21.5 | 0.43 | 1.100 | -x | — |
| 孔隙率ε | 直径dp/mm | 热导率λp/W·m-1·K-1 |
|---|---|---|
| 0.5 | 0.371 | 0.58 |
| 孔隙率ε | 直径dp/mm | 热导率λp/W·m-1·K-1 |
|---|---|---|
| 0.5 | 0.371 | 0.58 |
| [1] | SEYAM S, DINCER I, AGELIN-CHAAB M. Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system[J]. Journal of Cleaner Production, 2020, 243: 118562. |
| [2] | Hydrogen Society: More Than Just a Vision?[M]. Germany: Hydrogeit Verlag, 2010. |
| [3] | 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191. |
| PU Liang, YU Haishuai, DAI Minghao, et al. Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese Science Bulletin, 2022, 67(19): 2172-2191. | |
| [4] | CHEN Liang, XIAO Runfeng, CHENG Cheng, et al. Thermodynamic analysis of the para-to-ortho hydrogen conversion in cryo-compressed hydrogen vessels for automotive applications[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24928-24937. |
| [5] | ASADNIA M, MEHRPOOYA M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
| [6] | CARDELLA U, DECKER L, KLEIN H. Economically viable large-scale hydrogen liquefaction[J]. IOP Conference Series: Materials Science and Engineering, 2017, 171: 012013. |
| [7] | WILHELMSEN Ø, BERSTAD D, AASEN A, et al. Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5033-5047. |
| [8] | HUTCHINSON H L. Analysis of catalytic ortho-para hydrogen reaction mechanisms[D]. Oklahoma: University of Colorado, 1966. |
| [9] | DONAUBAUER P J, CARDELLA U, DECKER L, et al. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction[J]. Chemical Engineering & Technology, 2019, 42(3): 669-679. |
| [10] | PENG Xiang, LIU Zhenyu, QIU Chan, et al. Effect of inlet flow maldistribution on the passage arrangement design of multi-stream plate-fin heat exchanger[J]. Applied Thermal Engineering, 2016, 103: 67-76. |
| [11] | PFORTNER B, HADAD W AL, SCHICK V, et al. Transient detection of either maldistribution or flowrate change in a counter current plate-fin heat exchanger using an ARX model[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121987. |
| [12] | 李俊, 蒋彦龙, 王瑜, 等. 流量分配不均下三股流板翅式换热器数值研究[J]. 工程热物理学报, 2017, 38(9): 1986-1993. |
| LI Jun, JIANG Yanlong, WANG Yu, et al. Numerical study of three-stream plate-fin heat exchanger under the condition of flow ununiform distribution[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1986-1993. | |
| [13] | BURY T, HANUSZKIEWICZ-DRAPAŁA M. Experimental and numerical analysis of the impact of a liquid flow rate on the operational performance of a cross-flow tube-and-fin heat exchanger[J]. Archives of Thermodynamics, 2024: 405-426. |
| [14] | HÅNDE R, WILHELMSEN Ø. Minimum entropy generation in a heat exchanger in the cryogenic part of the hydrogen liquefaction process: On the validity of equipartition and disappearance of the highway[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15045-15055. |
| [15] | SKAUGEN G, BERSTAD D, WILHELMSEN Ø. Comparing exergy losses and evaluating the potential of catalyst-filled plate-fin and spiral-wound heat exchangers in a large-scale Claude hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6663-6679. |
| [16] | NIROOMAND R, SAIDI M H, HANNANI S K. A new multiscale modeling framework for investigating thermally-induced flow maldistribution in multi-stream plate-fin heat exchangers[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121779. |
| [17] | GOYAL Mukesh, CHAKRAVARTY Anindya, ATREY M D. Two dimensional model for multistream plate fin heat exchangers[J]. Cryogenics, 2014, 61: 70-78. |
| [18] | LIU Yuce, LI Ke, WEN Jian, et al. Thermodynamic characteristics of counter flow and cross flow plate fin heat exchanger based on distributed parameter model[J]. Applied Thermal Engineering, 2023, 219: 119542. |
| [19] | NIROOMAND R, SAIDI M H, HANNANI S K. A quasi-three-dimensional thermal model for multi-stream plate fin heat exchangers[J]. Applied Thermal Engineering, 2019, 157: 113730. |
| [20] | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
| TAO Wenquan. Numerical heat transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001. | |
| [21] | XU Pan, LEI Gang, XU Yuanyuan, et al. Study on continuous cooling process coupled with ortho-para hydrogen conversion in plate-fin heat exchanger filled with catalyst[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4690-4703. |
| [22] | XU Pan, WEN Jian, WANG Simin, et al. Study on performance comparison of different fin combinations of catalyst filled plate fin heat exchanger for hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23661-23678. |
| [23] | XU Pan, WEN Jian, WANG Simin, et al. Numerical simulation on flow and heat transfer performances of serrated and wavy fins in plate-fin heat exchanger for hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2023, 48(54): 20680-20693. |
| [24] | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
| XU Pan, WEN Jian, LI Yanzhong, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 16-24. | |
| [25] | HUTCHINSON H L, BARRICK P L, BROWN L F. Experimental study of reaction kinetics for para-ortho hydrogen at 20 to 80K[M]// Advances in Cryogenic Engineering. Boston, MA: Springer US, 1965: 190-196. |
| [26] | GOYAL M, KUMAR J, CHAKRAVARTY A, et al. In-field performance evaluation of a large size multistream plate fin heat exchanger installed in a helium liquefier[J]. Heat Transfer Engineering, 2020, 41(1): 101-112. |
| [27] | JAIN G, CHAUDHARY S, GUPTA P K, et al. Flow mal-distribution study in cryogenic counter-flow plate fin heat exchangers[C]// 26th International Cryogenic Engineering Conference & International Cryogenic Materials Conference. New Delhi: IOP Publishing, 2016: 171. |
| [1] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [2] | WANG Jilong, HE Lei, SU Yi, TANG Zhaofan. Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4928-4936. |
| [3] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [4] | ZHANG Guanghui, JIANG Jinxu, HUANG Lei, CHEN Shixiang, MA Tiantian. Influencing factors analysis and prediction for oxygen-enriched combustion characteristics of municipal sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5460-5470. |
| [5] | LONG Huilong, TANG Haoran, MA Yuan, QIN Yunfeng, BAO Yihui, ZHANG Zengfu. Numerical calculation method of typical hydrate phase diagram [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4871-4878. |
| [6] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [7] | DAI Guilong, WANG Xiaoyu, HUANGFU Jiangfei, GONG Lingzhu. Convection heat transfer characteristics of pore-scale Laguerre Voronoi open-cell foam [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4394-4407. |
| [8] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [9] | WANG Zhaolin, ZHANG Zhigang, ZHOU Jing, GAO Chen, PENG Kechen, JIANG Mindi, XI Xi, XU Shengli, LIU Hong. Flow and heat transfer characteristics based on Gyroid triply periodic minimal surface heat exchange components [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4454-4462. |
| [10] | ZHANG Jianwei, YIN Miaomiao, DONG Xin, FENG Ying. Numerical simulation of mixing characteristics in an impinging stream reactor based on oscillating jets [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4488-4499. |
| [11] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [12] | WANG Lanxin, LI Fei, QIAN Yanan, TIAN Yujie, SHEN Jun, WANG Wei. Numerical simulation of coal pyrolysis with different moisture content in fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4513-4525. |
| [13] | AN Shu, MA Yongli, FENG Lei, ZHANG Zihao, LIU Mingyan. CFD simulation of process of water-based foaming through net foam generator [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4545-4555. |
| [14] | TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647. |
| [15] | ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |