1 |
HOFFERT Martin I, CALDEIRA Ken, BENFORD Gregory, et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet[J]. Science, 2002, 298(5595): 981-987.
|
2 |
TURNER James Morton. The matter of a clean energy future[J]. Science, 2022, 376(6600): 1361.
|
3 |
KITTNER Noah, LILL Felix, KAMMEN Daniel M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 17125.
|
4 |
MANTHIRAM Arumugam. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063-1069.
|
5 |
DENG Jie, Chulheung BAE, DENLINGER Adam, et al. Electric vehicles batteries: Requirements and challenges[J]. Joule, 2020, 4(3): 511-515.
|
6 |
ZHAO Bote, RAN Ran, LIU Meilin, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives[J]. Materials Science and Engineering R: Reports, 2015, 98: 1-71.
|
7 |
SUN Xinyi, HOU Zhenpeng, HE Ping, et al. Recent advances in rechargeable Li-CO2 batteries[J]. Energy & Fuels, 2021, 35(11): 9165-9186.
|
8 |
TAKECHI Kensuke, SHIGA Tohru, ASAOKA Takahiko. A Li-O2/CO2 battery[J]. Chemical Communications, 2011, 47(12): 3463-3465.
|
9 |
ZOU Jinshuo, LIANG Gemeng, ZHANG Fangli, et al. Revisiting the role of discharge products in Li-CO2 batteries[J]. Advanced Materials, 2023, 35(49): 2210671.
|
10 |
HAO Qianqian, ZHANG Zhen, MAO Ya, et al. Catalysts for Li-CO2 batteries: From heterogeneous to homogeneous[J]. ChemNanoMat, 2022, 8(1): e202100381.
|
11 |
QIAO Yun, XU Shaomao, LIU Yang, et al. Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li-CO2 battery[J]. Energy & Environmental Science, 2019, 12(3): 1100-1107.
|
12 |
CHEN Biao, SUI Simi, HE Fang, et al. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications[J]. Chemical Society Reviews, 2023, 52(22): 7802-7847.
|
13 |
ZHOU Jingwen, LI Xuelian, YANG Chao, et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019, 31(3): e1804439.
|
14 |
WU Chunhui, QI Guicai, ZHANG Junxiang, et al. Porous Mo3P/Mo nanorods as efficient Mott-Schottky cathode catalysts for low polarization Li-CO2 battery[J]. Small, 2023, 19(44): 2302078.
|
15 |
ZHANG Jing, HE Rong, ZHUANG Quan, et al. Tuning 4f-center electron structure by Schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery[J]. Advanced Science, 2022, 9(23): 2202244.
|
16 |
YANG Haoqi, WANG Bingdi, KOU Shuqing, et al. Mott-Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery[J]. Chemical Engineering Journal, 2021, 425: 131589.
|
17 |
M-J MADITO, M-Y-A ISMAIL, T-T HLATSHWAYO, et al. The nature of surface defects in Xe ion-implanted glassy carbon annealed at high temperatures: Raman spectroscopy analysis[J]. Applied Surface Science, 2020, 506: 145001.
|
18 |
HOU Yuyang, WANG Jiazhao, LIU Lili, et al. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries[J]. Advanced Functional Materials, 2017, 27(27): 1700564.
|
19 |
WANG Zhuanpei, François BÉGUIN. Implementation of a choline bis(trifluoromethylsulfonyl)imide aqueous electrolyte for low temperature EDLCs enabled by a cosolvent[J]. Journal of Energy Chemistry, 2022, 70: 84-94.
|
20 |
XIAO Jiamin, ZHANG Shishi, SUN Yanyan, et al. Urchin-like structured MoO2/Mo3P/Mo2C triple-interface heterojunction encapsulated within nitrogen-doped carbon for enhanced hydrogen evolution reaction[J]. Small, 2023, 19(12): 2206472.
|
21 |
LIU Ying, ZHU Xiaorong, ZHANG Qinghua, et al. Engineering Mo/Mo2C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A, 2020, 8(18): 8920-8926.
|
22 |
BIE Shiyu, DU Meili, HE Wenxiang, et al. Carbon Nanotube@RuO2 as a high performance catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5146-5151.
|
23 |
ZHANG Xin, WANG Chengyi, LI Huanhuan, et al. High performance Li-CO2 batteries with NiO-CNT cathodes[J]. Journal of Materials Chemistry A, 2018, 6(6): 2792-2796.
|
24 |
JENA Anirudha, HSIEH He Chin, THOKA Subashchandrabose, et al. Curtailing the overpotential of Li-CO2 batteries with shape-controlled Cu2O as cathode: Effect of illuminating the cathode[J]. ChemSusChem, 2020, 13(10): 2719-2725.
|
25 |
YANG Sixie, QIAO Yu, HE Ping, et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst[J]. Energy & Environmental Science, 2017, 10(4): 972-978.
|
26 |
SUN Xinyi, MU Xiaowei, ZHENG Wei, et al. Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V[J]. Nature Communications, 2023, 14: 536.
|
27 |
ZHANG Xuejing, WANG Tianshuai, YANG Yijun, et al. Breaking the stable triangle of carbonate via W-O bonds for Li-CO2 batteries with low polarization[J]. ACS Energy Letters, 2021, 6(10): 3503-3510.
|
28 |
XU Shaomao, CHEN Chaoji, KUANG Yudi, et al. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling[J]. Energy & Environmental Science, 2018, 11(11): 3231-3237.
|
29 |
WU Mihye, KIM Ju Ye, PARK Hyunsoo, et al. Understanding reaction pathways in high dielectric electrolytes using β-Mo2C as a catalyst for Li-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32633-32641.
|
30 |
YANG Chao, YUN Sining, SHI Jing, et al. Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: A hybrid experimental-computational exploration[J]. Chemical Engineering Journal, 2021, 419: 129636.
|
31 |
JAFARINASAB Mitra, AKBARI Azam. Co-ZIF-67 encapsulated phosphomolybdic acid as a hybrid catalyst for deep oxidative desulfurization[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106472.
|
32 |
MA Yuanyuan, YANG Tong, ZOU Haiyuan, et al. Synergizing Mo single atoms and Mo2 C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia[J]. Advanced Materials, 2020, 32(33): e2002177.
|
33 |
CHEN Yifan, LI Zhijuan, ZHU Yanbo, et al. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Materials, 2019, 31(8): 1806312.
|
34 |
YU Feiyang, GAO Ya, LANG Zhongling, et al. Electrocatalytic performance of ultrasmall Mo2C affected by different transition metal dopants in hydrogen evolution reaction[J]. Nanoscale, 2018, 10(13): 6080-6087.
|
35 |
YI Yuyang, ZHAO Wen, ZENG Zhihan, et al. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage[J]. Small, 2020, 16(7): e1906566.
|
36 |
YANG Chao, GUO Kunkun, YUAN Dingwang, et al. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery[J]. Journal of the American Chemical Society, 2020, 142(15): 6983-6990.
|
37 |
GAO Boxu, HUANG Yanghuan, WANG Sinong, et al. MoC nanodots toward efficient electrocatalytic hydrogen evolution: An interlayer-confined strategy with a 2D-zeolite precursor[J]. Journal of Materials Chemistry A, 2021, 9(8): 4724-4733.
|
38 |
TAN Hao, JI Qianqian, WANG Chao, et al. Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction[J]. Nano Research, 2022, 15(4): 3010-3016.
|
39 |
CHENG Yihao, WANG Yuxuan, CHEN Biao, et al. Routes to bidirectional cathodes for reversible aprotic alkali metal-CO2 batteries[J]. Advanced Materials, 2024: 2410704.
|
40 |
WANG Yuxuan, CHENG Yihao, CHEN Biao, et al. P-band regulation guides the free-standing porous carbon electrode for efficient Na-CO2 batteries[J]. Energy Storage Materials, 2024, 71: 103655.
|