Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 5985-5994.DOI: 10.16085/j.issn.1000-6613.2024-0904
• Invited review •
XU Youhao1,2(), HE Mingyuan1,2
Received:
2024-06-03
Revised:
2024-06-24
Online:
2024-12-07
Published:
2024-11-15
Contact:
XU Youhao
通讯作者:
许友好
作者简介:
许友好(1965—),男,正高级工程师,研究方向为催化反应工程技术。E-mail:xuyouhao.ripp@sinopec.com。
基金资助:
CLC Number:
XU Youhao, HE Mingyuan. Development of efficient and flexible fluid catalytic cracking technology based on diameter-transformed fluidized bed[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 5985-5994.
许友好, 何鸣元. 基于变径流化床的高效灵活的催化裂化技术开发[J]. 化工进展, 2024, 43(11): 5985-5994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0904
项目 | 起源或市场需求 | 开发的技术名称和年代 | 流化床类型 | 主要解决流化问题 |
---|---|---|---|---|
变径流化床 催化反应工程 | 更高的汽油质量 | 双反应区的变径流化床催化裂化工艺,2000年前后 | 变径流化床 | 不同流型之间平稳过渡 |
流化床催化 反应工程 | 更多的汽油量 | 反应与再生循环的密相流化床催化裂化工艺,20世纪40年代 | 密相流化床 | 催化剂在再生器与反应器之间密相输送 |
项目 | 工艺技术诞生的重要性及拓展 | 特点及功能 | 对催化反应学科贡献及成熟度 | |
变径流化床 催化反应工程 | 开启了流化床精准调控复杂反应途径之门,丰富催化反应工程科学内涵 | 多流型共存,传热和传质效率高,满足复杂催化反应各反应途径热力学和动力学差异要求 | 变径流化床催化反应工程,处于研发前期,将湍流床、快速床和输送床耦合于单器流化床,后期应用前景广阔 | |
流化床催化 反应工程 | 开启流化床及流态化技术理论研究与工业应用,使处于萌芽时期的流态化技术迅速成为催化反应工程重要分支之一 | 单一流型,传热和传质效率高,满足吸热或放热强的催化反应 | 流化床催化反应工程,自1942年至今80余年,由鼓泡床拓展到湍流床、快速床和输送床,仍有创新空间 |
项目 | 起源或市场需求 | 开发的技术名称和年代 | 流化床类型 | 主要解决流化问题 |
---|---|---|---|---|
变径流化床 催化反应工程 | 更高的汽油质量 | 双反应区的变径流化床催化裂化工艺,2000年前后 | 变径流化床 | 不同流型之间平稳过渡 |
流化床催化 反应工程 | 更多的汽油量 | 反应与再生循环的密相流化床催化裂化工艺,20世纪40年代 | 密相流化床 | 催化剂在再生器与反应器之间密相输送 |
项目 | 工艺技术诞生的重要性及拓展 | 特点及功能 | 对催化反应学科贡献及成熟度 | |
变径流化床 催化反应工程 | 开启了流化床精准调控复杂反应途径之门,丰富催化反应工程科学内涵 | 多流型共存,传热和传质效率高,满足复杂催化反应各反应途径热力学和动力学差异要求 | 变径流化床催化反应工程,处于研发前期,将湍流床、快速床和输送床耦合于单器流化床,后期应用前景广阔 | |
流化床催化 反应工程 | 开启流化床及流态化技术理论研究与工业应用,使处于萌芽时期的流态化技术迅速成为催化反应工程重要分支之一 | 单一流型,传热和传质效率高,满足吸热或放热强的催化反应 | 流化床催化反应工程,自1942年至今80余年,由鼓泡床拓展到湍流床、快速床和输送床,仍有创新空间 |
装置所属企业代号 | 工艺 专利商 | 处理量 /t·a-1 | 反应器 型式 | 生产 方案 | 原料性质(加氢重油) | 催化剂单耗 /kg·t-1 | 汽油产率 /% | 焦炭产率 /% | 汽油烯烃 体积分数/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
密度/kg·m-3 | 残炭值/% | Ni+V/μg·g-1 | |||||||||
A | 国外著名专利商 | 350×104 | 常规提升管 | 汽油 | 930 | 5.80 | 14.5 | 1.35 | 41.03 | 9.17 | 49.8 |
B | 中国石化 | 350×104 | 变径流化床 | 汽油 | 936 | 5.45 | 19.2 | 1.02 | 45.16 | 8.08 | 24.4 |
装置所属企业代号 | 工艺 专利商 | 处理量 /t·a-1 | 反应器 型式 | 生产 方案 | 原料性质(加氢重油) | 催化剂单耗 /kg·t-1 | 汽油产率 /% | 焦炭产率 /% | 汽油烯烃 体积分数/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|
密度/kg·m-3 | 残炭值/% | Ni+V/μg·g-1 | |||||||||
A | 国外著名专利商 | 350×104 | 常规提升管 | 汽油 | 930 | 5.80 | 14.5 | 1.35 | 41.03 | 9.17 | 49.8 |
B | 中国石化 | 350×104 | 变径流化床 | 汽油 | 936 | 5.45 | 19.2 | 1.02 | 45.16 | 8.08 | 24.4 |
项目 | 工艺类型 | |
---|---|---|
FCC | IHCC | |
合计 | 100.00 | 100.49① |
密度(20 ℃)/kg·m-3 | 928.6 | 930.6 |
残炭/% | 5.15 | 5.06 |
产物分布/% | ||
干气 | 3.56 | 1.94 |
液化气 | 17.66 | 14.05 |
汽油 | 44.72 | 47.44 |
轻循环油 | 17.67 | 28.60 |
FGO | 0 | 0.42 |
油浆 | 6.38 | 0 |
焦炭 | 9.74 | 7.69 |
损失 | 0.27 | 0.35 |
项目 | 工艺类型 | |
---|---|---|
FCC | IHCC | |
合计 | 100.00 | 100.49① |
密度(20 ℃)/kg·m-3 | 928.6 | 930.6 |
残炭/% | 5.15 | 5.06 |
产物分布/% | ||
干气 | 3.56 | 1.94 |
液化气 | 17.66 | 14.05 |
汽油 | 44.72 | 47.44 |
轻循环油 | 17.67 | 28.60 |
FGO | 0 | 0.42 |
油浆 | 6.38 | 0 |
焦炭 | 9.74 | 7.69 |
损失 | 0.27 | 0.35 |
项目 | 多产烯烃 | 多产低碳烯烃 | |
---|---|---|---|
TCC-1 | MMC-2 | TCC-1 | |
反应条件 | 低苛刻度 | 低苛刻度,与TCC-1 评价条件相同 | 高苛刻度 |
转化率/% | 71.87 | 83.32 | 83.65 |
产物分布/% | |||
烯烃产品产率 | 46.31 | 41.42 | 55.07 |
乙烯 | 2.28 | 2.28 | 6.08 |
丙烯 | 11.21 | 10.90 | 20.20 |
丁烯 | 13.17 | 12.10 | 16.77 |
汽油烯烃 | 19.65 | 16.14 | 12.02 |
烯烃产品选择性/% | 64.45 | 49.71 | 65.83 |
液化气中丙烯体积 分数/% | 35.12 | 30.43 | 48.71 |
液化气中烯烃体积 分数/% | 76.38 | 64.21 | 89.25 |
焦炭产率/% | 2.24 | 3.90 | 4.21 |
项目 | 多产烯烃 | 多产低碳烯烃 | |
---|---|---|---|
TCC-1 | MMC-2 | TCC-1 | |
反应条件 | 低苛刻度 | 低苛刻度,与TCC-1 评价条件相同 | 高苛刻度 |
转化率/% | 71.87 | 83.32 | 83.65 |
产物分布/% | |||
烯烃产品产率 | 46.31 | 41.42 | 55.07 |
乙烯 | 2.28 | 2.28 | 6.08 |
丙烯 | 11.21 | 10.90 | 20.20 |
丁烯 | 13.17 | 12.10 | 16.77 |
汽油烯烃 | 19.65 | 16.14 | 12.02 |
烯烃产品选择性/% | 64.45 | 49.71 | 65.83 |
液化气中丙烯体积 分数/% | 35.12 | 30.43 | 48.71 |
液化气中烯烃体积 分数/% | 76.38 | 64.21 | 89.25 |
焦炭产率/% | 2.24 | 3.90 | 4.21 |
项目 | 最大化生产 汽油方案 | 兼产丙烯、丁烯和汽油方案 | 最大化生产 丙烯、丁烯方案 |
---|---|---|---|
密度(20℃)/kg·m-3 | 916.3 | 913.3 | 912.7 |
残炭质量分数/% | 0.50 | 0.63 | 0.60 |
硫质量分数/% | 0.39 | 0.40 | 0.42 |
反应温度/℃ | 基础 | +13 | +30 |
产物分布/% | |||
干气 | 2.83 | 2.85 | 4.01 |
液化气 | 21.00 | 22.81 | 29.80 |
丙烯 | 6.16 | 8.19 | 12.17 |
异丁烯 | 1.45 | 2.51 | 4.76 |
汽油 | 42.64 | 40.72 | 30.95 |
燃料油组分 | |||
燃料油轻组分 | 21.69 | 21.32 | 22.06 |
燃料油重组分 | 4.73 | ||
油浆 | 3.43 | 4.80 | |
焦炭 | 8.41 | 7.50 | 8.45 |
合计 | 100 | 100 | 100 |
转化率/% | 74.88 | 73.88 | 73.21 |
项目 | 最大化生产 汽油方案 | 兼产丙烯、丁烯和汽油方案 | 最大化生产 丙烯、丁烯方案 |
---|---|---|---|
密度(20℃)/kg·m-3 | 916.3 | 913.3 | 912.7 |
残炭质量分数/% | 0.50 | 0.63 | 0.60 |
硫质量分数/% | 0.39 | 0.40 | 0.42 |
反应温度/℃ | 基础 | +13 | +30 |
产物分布/% | |||
干气 | 2.83 | 2.85 | 4.01 |
液化气 | 21.00 | 22.81 | 29.80 |
丙烯 | 6.16 | 8.19 | 12.17 |
异丁烯 | 1.45 | 2.51 | 4.76 |
汽油 | 42.64 | 40.72 | 30.95 |
燃料油组分 | |||
燃料油轻组分 | 21.69 | 21.32 | 22.06 |
燃料油重组分 | 4.73 | ||
油浆 | 3.43 | 4.80 | |
焦炭 | 8.41 | 7.50 | 8.45 |
合计 | 100 | 100 | 100 |
转化率/% | 74.88 | 73.88 | 73.21 |
1 | 金涌, 程易, 白丁荣, 等. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
JIN Yong, CHENG Yi, BAI Dingrong, et al. Fluidization research and development in China[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. | |
2 | WERTHER Joachim, HARTGE Ernst-Ulrich, HEINRICH Stefan. Fluidized-bed reactors—Status and some development perspectives[J]. Chemie Ingenieur Technik, 2014, 86(12): 2022-2038. |
3 | LETZSCH Warren. Fluid catalytic cracking (FCC) in petroleum refining[M]//JONES D S J, TREESE S A, PUJADÓ P R. Handbook of petroleum processing. Switzerland: Springer, 2015: 261-306. |
4 | 杨启业, 徐承恩. 砥砺奋进四十年 炼油工业换新颜[J]. 石油学报(石油加工), 2019, 35(5): 825-829. |
YANG Qiye, XU Cheng’en. 40 Years of hard work, refining industry has a new look[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 825-829. | |
5 | 王基铭. 中国炼油技术新进展[M]. 北京: 中国石化出版社, 2017. |
WANG Jiming. New progress of refining technology in China[M]. Beijing: China Petrochemical Press, 2017. | |
6 | HE Mingyuan. The development of catalytic cracking catalysts: Acidic property related catalytic performance[J]. Catalysis Today, 2002, 73(1/2): 49-55. |
7 | 许友好, 张久顺, 龙军. 生产清洁汽油组分的催化裂化新工艺MIP[J]. 石油炼制与化工, 2001, 32(8): 1-5. |
XU Youhao, ZHANG Jiushun, LONG Jun. A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J]. Petroleum Processing and Petrochemicals, 2001, 32(8): 1-5. | |
8 | 许友好, 张久顺, 龙军, 等. 多产异构烷烃的催化裂化工艺技术开发与工业应用[J]. 中国工程科学, 2003, 5(5): 55-58. |
XU Youhao, ZHANG Jiushun, LONG Jun, et al. Development and commercial application of FCC Process for maximizing iso-paraffins(MIP) in cracked naphtha[J]. Strategic Study of CAE, 2003, 5(5): 55-58. | |
9 | 许友好, 阳文杰, 王新. 支撑我国汽油质量持续升级的核心技术及技术路线开发与应用 1. 催化裂化汽油烯烃含量控制理论基础与工业实践[J]. 石油炼制与化工, 2022, 53(9): 1-9. |
XU Youhao, YANG Wenjie, WANG Xin. Development and application of core technology and technical route supporting continuous upgrading of gasoline quality in China 1. Theoretical Basis and Industrial Practice of Olefin Content Control in FCC Gasoline[J]. Petroleum Processing and Petrochemicals, 2022, 53(9): 1-9. | |
10 | 王新, 李明, 许友好, 等. 生产超低烯烃汽油的催化裂化技术研发与工业应用[J]. 石油炼制与化工, 2022, 53(2): 15-22. |
WANG Xin, LI Ming, XU Youhao, et al. Research and industrial application of catalytic cracking technology for producing ultra-low olefin gasoline[J]. Petroleum Processing and Petrochemicals, 2022, 53(2): 15-22. | |
11 | XU Youhao, CUI Shouye. A novel fluid catalytic cracking process for maximizing iso-paraffins: From fundamentals to commercialization[J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 9-23. |
12 | 许友好, 王维, 鲁波娜, 等. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
XU Youhao, WANG Wei, LU Bona, et al. China’s oil refining innovation: MIP development strategy and enlightenment[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. | |
13 | 于兆臣, 田文君. FCC汽油生产国Ⅵ汽油工艺路线的工业应用[J]. 炼油技术与工程, 2017, 47(8): 11-15. |
YU Zhaochen, TIAN Wenjun. Industrial application of process route of FCC gasoline producing Guo Ⅵ gasoline[J]. Petroleum Refinery Engineering, 2017, 47(8): 11-15. | |
14 | 朱渝. MIP技术及其专用剂在加氢重油催化裂化装置的工业应用[J]. 石油炼制与化工, 2015, 46(10): 72-76. |
ZHU Yu. Application of MIP technology and proprietary catalysts in RFCC unit processing hydrotreated heavy oil[J]. Petroleum Processing and Petrochemicals, 2015, 46(10): 72-76. | |
15 | 周亚堃, 刘彬, 马明亮. 300×104t/a重油催化裂化装置的MIP工艺技术改造[J]. 石油与天然气化工, 2020, 49(4): 32-36. |
ZHOU Yakun, LIU Bin, MA Mingliang. MIP process technology reformation of 3×106 t/a heavy oil catalytic cracking unit[J]. Chemical Engineering of Oil & Gas, 2020, 49(4): 32-36. | |
16 | 许友好, 何鸣元. 重油在加工过程中的碳氢优化分布及有效利用的探索[J]. 石油学报(石油加工), 2017, 33(1): 1-7. |
XU Youhao, HE Mingyuan. Explorations of optimization and highly effective usage of carbon & hydrogen in upgrading of heavy oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(1): 1-7. | |
17 | 许友好, 刘涛, 王毅, 等. 多产轻质油的催化裂化馏分油加氢处理与选择性催化裂化集成工艺(IHCC)的研发和工业试验[J]. 石油炼制与化工, 2016, 47(7): 1-8. |
XU Youhao, LIU Tao, WANG Yi, et al. Development and commercial application of IHCC technology for maximizing liquid yield[J]. Petroleum Processing and Petrochemicals, 2016, 47(7): 1-8. | |
18 | 许友好, 左严芬, 白旭辉, 等. 靶向生产低碳烯烃的催化裂化技术开发背景、思路和概念设计[J]. 石油炼制与化工, 2021, 52(8): 1-11. |
XU Youhao, ZUO Yanfen, BAI Xuhui, et al. Development background, development idea and conceptual design of FCC process for targeted cracking to light olefins[J]. Petroleum Processing and Petrochemicals, 2021, 52(8): 1-11. | |
19 | 许友好, 左严芬, 欧阳颖, 等. 低生焦、低能耗和高烯烃产率的中孔分子筛重油催化裂化工艺研发与工业实践[J]. 石油炼制与化工, 2022, 53(8): 1-10. |
XU Youhao, ZUO Yanfen, OUYANG Ying, et al. Development and industrial practice of heavy oil catalytic cracking process over mesoporous zeolite for low coking low energy comsumption and high olefin yield[J]. Petroleum Processing and Petrochemicals, 2022, 53(8): 1-10. | |
20 | 王启飞, 白旭辉, 许友好, 等. 应对市场需求变化的灵活高效催化裂化工艺技术研究与工业实践[J]. 石油炼制与化工, 2024, 55(7): 1-7. |
WANG Qifei, BAI Xuhui, XU Youhao, et al. Study and application of flexible fluid catalytic cracking process to meet market fluctuation[J]. Petroleum Processing and Petrochemicals, 2024, 55(7): 1-7. | |
21 | 于福东, 宋亦伟, 白旭辉, 等. 催化裂化装置应用MFP技术的工业试验[J]. 石油炼制与化工, 2022, 53(7): 18-22. |
YU Fudong, SONG Yiwei, BAI Xuhui, et al. Industrial test of MFP technology in FCC unit[J]. Petroleum Processing and Petrochemicals, 2022, 53(7): 18-22. |
[1] | LIU Feng, CHU Yang, LI Huifeng, LI Mingfeng, ZHU Mei, ZHANG Runqiang. Reaction process intensification of heavy molecular mercaptan in FCC gasoline catalytic conversion [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 279-284. |
[2] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[3] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[4] | LIU Meijia, WANG Gang, ZHANG Zhongdong, HE Shengbao, GAO Jinsen. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. |
[5] | SONG Shaotong, LYU Zhongwu, JIANG Zengkun, LI Yang, WU Pei, ZHANG Yalin, ZHANG Ran, CHEN Jinyang, JU Yana. Effect of ZSM-5/γ-Al2O3 mass ratio on isomerization/aromatization performance of FCC light gasoline [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 229-238. |
[6] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[7] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
[8] | SONG Shaotong, LI Tianshu, JU Yana, LYU Zhongwu, WU Pei, SUN Changyu, DUAN Aijun. Effect of alumina on aromatization performance of FCC light gasoline [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2460-2467. |
[9] | FANG Dong, HE Yi, CUI Xiaochen. FCC heavy cycle oil selective hydrogenation-catalytic cracking to produce more high value products [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6358-6363. |
[10] | BI Wenfei, DAI Chengyi, LI Xuemei, HE Jianxun, ZHAO Binran, MA Xiaoxun. Synergistic catalysis of methane to light olefins by plasma and Cu-Pd/S-1 catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 227-236. |
[11] | LYU Penggang, LIU Tao, YE Hang, HUANG Xiaoliang, DUAN Hongchang, TAN Zhengguo. Advances in improving the performance of additives for increasing propylene production in FCC process [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 210-220. |
[12] | LU Deqing, XIN Jing, ZHU Yuanbao, SU Mengjun. Analysis on integrated utilization of FCC slurry oil [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 142-149. |
[13] | Jingyu CHEN,Jianhong ZHANG,Hao SHENG,Dakai WU,Xinhua GAO,Qingxiang MA,Jianli ZHANG,Subing FAN,Tiansheng ZHAO. Design and preparation of CuZnTiO2/SAPO-34 bifunctional catalyst and its catalytic performance in CO2 hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 567-576. |
[14] | Lingyu WANG,Wenfeng HAN,Huazhang LIU,Xiazhen YANG. Research progress on active phase of iron-based catalysts for light olefins synthesis from syngas [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4949-4955. |
[15] | Yana JU,Yang LI,Kunhong LIU,Litao WANG,Tianshu LI,Yaqiong HU,Qi FENG,Zengkun JIANG,Ran ZHANG. Study on the distribution laws of arsenide in the full-range FCC gasoline [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3688-3694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |