Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5581-5600.DOI: 10.16085/j.issn.1000-6613.2023-1660
• Materials science and technology • Previous Articles
ZONG Shirong1,2(), WANG Ling1(), YAO Qiuyue1, YAN Wei1()
Received:
2023-09-19
Revised:
2024-02-18
Online:
2024-10-29
Published:
2024-10-15
Contact:
WANG Ling, YAN Wei
通讯作者:
王玲,延卫
作者简介:
宗世荣(1987—),男,博士研究生,工程师,研究方向为钠离子电池和钠离子电容器。E-mail:531792154@qq.com。
基金资助:
CLC Number:
ZONG Shirong, WANG Ling, YAO Qiuyue, YAN Wei. Research progress of carbon as anode materials for sodium-ion storage devices[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5581-5600.
宗世荣, 王玲, 姚秋月, 延卫. 炭材料在储钠器件负极中的研究进展[J]. 化工进展, 2024, 43(10): 5581-5600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1660
炭材料 | ICE/% | 循环性能 | 倍率性能/mA·h·g-1 | 参考文献 |
---|---|---|---|---|
PGC | — | 0.1A/g循环250次后237mA·h/g | 72(2A/g) | [ |
C60@CN | 44 | 5A/g循环5000次后101.2mA·h/g | 226.6(1A/g) | [ |
6H-G4 | 43 | 0.1A/g循环200次后容量保持率87% | 66(1A/g) | [ |
FGC | — | 1A/g循环10000次后容量保持率87% | 106(10A/g) | [ |
EG基碳纳米片 | 21.3 | 0.1A/g下198mA·h/g | 65(5A/g) | [ |
IWC(1000℃) | 22.1 | 0.1A/g循环100次后217mA·h/g | 101(1A/g) | [ |
NPSC | 35.45 | 1A/g循环3000次后162mA·h/g | 130(5A/g) | [ |
NPCS | 61.2 | 5A/g循环10000次后容量保持率93.7% | 131.5(10A/g) | [ |
NC(1200℃) | 49.5 | 0.1A/g循环500次后容量保持率87% | 85(0.5A/g) | [ |
硬炭微纤维(1400℃) | 69 | 0.06A/g循环100次后200.6mA·h/g(93%) | 159.7(0.15A/g) | [ |
PFBC(700℃) | 39.4 | 0.2C循环300次后322mA·h/g | 183(5C) | [ |
GLC(900℃) | 73 | 5A/g循环1500次后容量保持率近100% | 124(5A/g) | [ |
榛子壳硬炭 | 91 | 20mA/g循环100次后306mA·h/g(91%) | — | [ |
樟木渣硬炭(0.25℃/min) | 82.4 | 50mA/g循环200次后容量保持率90% | 67.4(0.4A/g) | [ |
SHCs(1500℃) | 90.5 | 0.4C循环300次后容量保持率94.5% | — | [ |
HCNS(1500℃) | 88 | 0.5A/g循环100次后240mA·h/g | 79(1A/g) | [ |
PTA-Lys-800 | 51.3 | 0.1A/g循环100次后338.8mA·h/g(86%) | 131.1(4A/g) | [ |
介孔N掺杂棕榈叶硬炭 | — | 0.2A/g循环1000次后231mA·h/g(约95%) | 120(1A/g) | [ |
N掺杂三维多孔碳纳米片 | 约13 | 1A/g循环1200次后400mA·h/g | 106(50A/g) | [ |
S-CNS | 约58 | 5A/g循环2000次后容量保持率94% | 133(10A/g) | [ |
OMCP(800℃) | — | 60mA/g循环200次后191.9mA·h/g | 266.7(0.6A/g) | [ |
PC | 63.9 | 0.1A/g循环200次后310.4mA·h/g | 226.2(2A/g) | [ |
P功能化硬炭 | 约60 | 20mA/g循环次100后386.4mA·h/g(98.2%) | 79.9(2A/g) | [ |
NSPC | 72.3 | 10A/g循环700次后239.4mA·h/g | 233.3(10A/g) | [ |
NSC(800℃) | 58.37 | 0.2A/g循环100次后316.1mA·h/g | 178.3(3A/g) | [ |
S-NCNFs | 32.6 | 0.05A/g循环100次后336.2mA·h/g | 132(10A/g) | [ |
N、S共掺杂空心碳纳米片 | 51.3 | 5A/g循环5000次后339mA·h/g | 245(60A/g) | [ |
NPHC | 71 | 1A/g循环2000次后183mA·h/g | 144(10A/g) | [ |
N/P-HCNF | — | 1A/g循环5000次后容量保持率95% | 100(10A/g) | [ |
NPPC | 42.8 | 0.1A/g循环100次后311.2mA·h/g | 102.8(10A/g) | [ |
N、B共掺杂碳纳米片 | — | 0.2A/g循环200次后309mA·h/g | 192(10A/g) | [ |
炭材料 | ICE/% | 循环性能 | 倍率性能/mA·h·g-1 | 参考文献 |
---|---|---|---|---|
PGC | — | 0.1A/g循环250次后237mA·h/g | 72(2A/g) | [ |
C60@CN | 44 | 5A/g循环5000次后101.2mA·h/g | 226.6(1A/g) | [ |
6H-G4 | 43 | 0.1A/g循环200次后容量保持率87% | 66(1A/g) | [ |
FGC | — | 1A/g循环10000次后容量保持率87% | 106(10A/g) | [ |
EG基碳纳米片 | 21.3 | 0.1A/g下198mA·h/g | 65(5A/g) | [ |
IWC(1000℃) | 22.1 | 0.1A/g循环100次后217mA·h/g | 101(1A/g) | [ |
NPSC | 35.45 | 1A/g循环3000次后162mA·h/g | 130(5A/g) | [ |
NPCS | 61.2 | 5A/g循环10000次后容量保持率93.7% | 131.5(10A/g) | [ |
NC(1200℃) | 49.5 | 0.1A/g循环500次后容量保持率87% | 85(0.5A/g) | [ |
硬炭微纤维(1400℃) | 69 | 0.06A/g循环100次后200.6mA·h/g(93%) | 159.7(0.15A/g) | [ |
PFBC(700℃) | 39.4 | 0.2C循环300次后322mA·h/g | 183(5C) | [ |
GLC(900℃) | 73 | 5A/g循环1500次后容量保持率近100% | 124(5A/g) | [ |
榛子壳硬炭 | 91 | 20mA/g循环100次后306mA·h/g(91%) | — | [ |
樟木渣硬炭(0.25℃/min) | 82.4 | 50mA/g循环200次后容量保持率90% | 67.4(0.4A/g) | [ |
SHCs(1500℃) | 90.5 | 0.4C循环300次后容量保持率94.5% | — | [ |
HCNS(1500℃) | 88 | 0.5A/g循环100次后240mA·h/g | 79(1A/g) | [ |
PTA-Lys-800 | 51.3 | 0.1A/g循环100次后338.8mA·h/g(86%) | 131.1(4A/g) | [ |
介孔N掺杂棕榈叶硬炭 | — | 0.2A/g循环1000次后231mA·h/g(约95%) | 120(1A/g) | [ |
N掺杂三维多孔碳纳米片 | 约13 | 1A/g循环1200次后400mA·h/g | 106(50A/g) | [ |
S-CNS | 约58 | 5A/g循环2000次后容量保持率94% | 133(10A/g) | [ |
OMCP(800℃) | — | 60mA/g循环200次后191.9mA·h/g | 266.7(0.6A/g) | [ |
PC | 63.9 | 0.1A/g循环200次后310.4mA·h/g | 226.2(2A/g) | [ |
P功能化硬炭 | 约60 | 20mA/g循环次100后386.4mA·h/g(98.2%) | 79.9(2A/g) | [ |
NSPC | 72.3 | 10A/g循环700次后239.4mA·h/g | 233.3(10A/g) | [ |
NSC(800℃) | 58.37 | 0.2A/g循环100次后316.1mA·h/g | 178.3(3A/g) | [ |
S-NCNFs | 32.6 | 0.05A/g循环100次后336.2mA·h/g | 132(10A/g) | [ |
N、S共掺杂空心碳纳米片 | 51.3 | 5A/g循环5000次后339mA·h/g | 245(60A/g) | [ |
NPHC | 71 | 1A/g循环2000次后183mA·h/g | 144(10A/g) | [ |
N/P-HCNF | — | 1A/g循环5000次后容量保持率95% | 100(10A/g) | [ |
NPPC | 42.8 | 0.1A/g循环100次后311.2mA·h/g | 102.8(10A/g) | [ |
N、B共掺杂碳纳米片 | — | 0.2A/g循环200次后309mA·h/g | 192(10A/g) | [ |
1 | HUANG Si, QIU Xueqing, WANG Caiwei, et al. Biomass-derived carbon anodes for sodium-ion batteries[J]. New Carbon Materials, 2023, 38(1): 40-66. |
2 | ZHAO Lingfei, HU Zhe, LAI Weihong, et al. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704. |
3 | 苑雪, 李洪基, 白文慧, 等. 生物质衍生炭基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742. |
YUAN Xue, LI Hongji, BAI Wenhui, et al. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. | |
4 | WU Feixiang, MAIER Joachim, YU Yan. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
5 | ZHENG Yun, YAO Yuze, Jiahua OU, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. |
6 | CAO Yanxiu, MAJEED Muhammad K, LI Yunjie, et al. P4Se3 as a new anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 775: 1286-1292. |
7 | CHEN Yuxiang, SHI Xiaodong, LU Bingan, et al. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassium-ion batteries[J]. Advanced Energy Materials, 2022, 12(46): 2202851. |
8 | LIU Yao, LI Wei, XIA Yongyao. Recent progress in polyanionic anode materials for Li (Na)-ion batteries[J]. Electrochemical Energy Reviews, 2021, 4(3): 447-472. |
9 | CAO Wei, ZHANG Erjin, WANG Jue, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. |
10 | ZENG Huihui, XING Baolin, CAO Yijun, et al. Insight into the microstructural evolution of anthracite during carbonization-graphitization process from the perspective of materialization[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1397-1406. |
11 | HOU Qinglin, XING Baolin, GUO Hui, et al. Application of coal-based carbon dots for photocatalysis and energy storage: A minireview[J]. New Journal of Chemistry, 2022, 46(36): 17102-17113. |
12 | TANG Zheng, ZHOU Siyu, WU Pengfei, et al. Engineering surface oxygenated functionalities on commercial hard carbon toward superior sodium storage[J]. Chemical Engineering Journal, 2022, 441: 135899. |
13 | CHEN Chaoji, WANG Zhenggang, ZHANG Bao, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
14 | YANG Jinlin, JU Zhicheng, JIANG Yong, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): 1700104. |
15 | ZHENG Jia, YU Kaifeng, WANG Xiaofeng, et al. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries[J]. Diamond and Related Materials, 2023, 131: 109593. |
16 | HONG Zhensheng, MALEKI Hajar, LUDWIG Tim, et al. New insights into carbon-based and MXene anodes for Na and K-ion storage: A review[J]. Journal of Energy Chemistry, 2021, 62: 660-691. |
17 | 苏志江, 孔俊丽. 锂离子电池碳负极材料研究概述[J]. 广东化工, 2022, 49(13): 84-86. |
SU Zhijiang, KONG Junli. Overview of researches on carbon anode materials for lithium ion batteries[J]. Guangdong Chemical Industry, 2022, 49(13): 84-86. | |
18 | ZHAO Rui, SUN Ning, XU Bin. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries[J]. Small Structures, 2021, 2(12): 2100132. |
19 | SAUREL Damien, ORAYECH Brahim, XIAO Biwei, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): 1703268. |
20 | YANG Chongyin, CHEN Ji, JI Xiao, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
21 | XU Zhenglong, YOON Gabin, PARK Kyu-Young, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications, 2019, 10(1): 2598. |
22 | 吴权, 刘彦辰, 朱卓, 等. 钠离子电池碳负极材料的研究进展[J]. 中国科学: 化学, 2021, 51(7): 862-875. |
WU Quan, LIU Yanchen, ZHU Zhuo, et al. Research progress of carbon anode materials for sodium-ion batteries[J]. Scientia Sinica Chimica, 2021, 51(7): 862-875. | |
23 | WEI Shiwei, DENG Xiaoyang, LI Wei, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries[J]. Chemical Engineering Journal, 2023, 455: 140540. |
24 | 杨翠云, 杨成浩. 钠离子电池硬炭负极材料的研究进展[J]. 高等学校化学学报, 2023, 44(5): 152-177. |
YANG Cuiyun, YANG Chenghao. Recent progress of hard carbon anode materials for sodium ion batteries[J]. Chemical Journal of Chinese Universities, 2023, 44(5): 162-177. | |
25 | XIE Lijing, TANG Cheng, SONG Mingxin, et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review[J]. Journal of Energy Chemistry, 2022, 72: 554-569. |
26 | XIONG Wei, WANG Zhenyu, ZHANG Jianqiao, et al. Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2017, 7: 229-235. |
27 | SHEN Hanting, ZHAO Hanqing, KANG Mengmeng, et al. Sodium storage in coal/biomass-derived carbon/carbon 3D networks[J]. ChemElectroChem, 2019, 6(17): 4541-4544. |
28 | LIU Yifan, LIU Siyan, LIU Ziyi, et al. Porous quasi-graphitic carbon sheets for unprecedented sodium storage[J]. Inorganic Chemistry Frontiers, 2020, 7(13): 2443-2450. |
29 | LI Pengju, SHEN Yanglin, LI Ximing, et al. Fullerene-intercalated graphitic carbon nitride as a high-performance anode material for sodium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(2): 608-616. |
30 | SUBRAMANYAN Krishnan, LEE Yun-Sung, ARAVINDAN Vanchiappan. Highly promoted solvent-co-intercalation process in pencil graphite anode and Na3V2(PO4)3 cathode in full-cell Na-ion battery[J]. Journal of Colloid and Interface Science, 2023, 632: 326-334. |
31 | WANG Jiali, WANG Huwei, ZHAO Rongyi, et al. Mechanistic insight into ultrafast kinetics of sodium cointercalation in few-layer graphitic carbon[J]. Nano Letters, 2022, 22(15): 6359-6365. |
32 | MA Chang, FAN Qingchao, DIRICAN Mahmut, et al. Porous carbon nanosheets derived from expanded graphite for supercapacitors and sodium-ion batteries[J]. Journal of Materials Science, 2020, 55(34): 16323-16333. |
33 | YU Yang, REN Zhuoya, LI Lei, et al. Ionic liquid-induced graphitization of biochar: N/P dual-doped carbon nanosheets for high-performance lithium/sodium storage[J]. Journal of Materials Science, 2021, 56(13): 8186-8201. |
34 | ZHAO Yan, CONG Yao, NING Hui, et al. N,P co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165691. |
35 | MISHRA Ranjit, PANIGRAHY Sonali, BARMAN Sudip. Single-source-derived nitrogen-doped soft carbons for application as anode for sodium-ion storage[J]. Energy & Fuels, 2022, 36(12): 6483-6491. |
36 | LEI Kaixiang, WANG Jing, CHEN Cong, et al. Recent progresses on alloy-based anodes for potassium-ion batteries[J]. Rare Metals, 2020, 39(9): 989-1004. |
37 | PEI Linyuan, YANG Liangtao, CAO Hailiang, et al. Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries[J]. Electrochimica Acta, 2020, 364: 137313. |
38 | WANG Pengtao, WANG Haonan, LIANG Ce, et al. Two-dimensional porous flake biomass carbon with large layer spacing as an anode material for sodium ion batteries[J]. Diamond and Related Materials, 2023, 131: 109601. |
39 | LU Pengrong, XIA Jili, DONG Xiaoling. Rapid sodium-ion storage in hard carbon anode material derived from ganoderma lucidum residue with inherent open channels[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14841-14847. |
40 | WANG Jiacheng, ZHAO Jiahua, HE Xiangxi, et al. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries[J]. Sustainable Materials and Technologies, 2022, 33: e00446. |
41 | GUO Shuai, CHEN Yimeng, TONG Liping, et al. Biomass hard carbon of high initial coulombic efficiency for sodium-ion batteries: Preparation and application[J]. Electrochimica Acta, 2022, 410: 140017. |
42 | YANG Bin, WANG Jin, ZHU Youyu, et al. Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries[J]. Journal of Power Sources, 2021, 492: 229656. |
43 | ASFAW Habtom D, GOND Ritambhara, KOTRONIA Antonia, et al. Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics[J]. Sustainable Materials and Technologies, 2022, 32: e00407. |
44 | LI Jiabao, DING Zibiao, PAN Likun, et al. Facile self-templating synthesis of layered carbon with N,S dual doping for highly efficient sodium storage[J]. Carbon, 2021, 173: 31-40. |
45 | SHAO Wenlong, SHI Haodong, JIAN Xigao, et al. Hard-carbon anodes for sodium-ion batteries: Recent status and challenging perspectives[J]. Advanced Energy and Sustainability Research, 2022, 3(7): 2200009. |
46 | HUANG Gang, KONG Qingquan, YAO Weitang, et al. High proportion of active nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries[J]. ChemSusChem, 2023, 16(7): 2202070. |
47 | NIE Wei, CHENG Hongwei, LIU Xiaolin, et al. Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries[J]. Journal of Power Sources, 2022, 522: 230994. |
48 | HUANG Huijuan, XU Rui, FENG Yuezhan, et al. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering[J]. Advanced Materials, 2020, 32(8): 1904320. |
49 | DE TOMAS Carla, ALABIDUN Sarat, CHATER Luke, et al. Doping carbon electrodes with sulfur achieves reversible sodium ion storage[J]. Journal of Physics: Energy, 2023, 5(2): 024006. |
50 | ZHAO Gongyuan, YU Dengfeng, ZHANG Hong, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: 104219. |
51 | LI Zhi, CAO Yujie, LI Gangyong, et al. High rate capability of S-doped ordered mesoporous carbon materials with directional arrangement of carbon layers and large d-spacing for sodium-ion battery[J]. Electrochimica Acta, 2021, 366: 137466. |
52 | ZHU Yade, HUANG Ying, CHEN Chen, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: 134698. |
53 | LI Yu, YUAN Yifei, BAI Ying, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Advanced Energy Materials, 2018, 8(18): 1702781. |
54 | FENG Xin, LI Yu, ZHANG Minghao, et al. Sulfur encapsulation and sulfur doping synergistically enhance sodium ion storage in microporous carbon anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50992-51000. |
55 | SUN Xizhen, WANG Changlai, GONG Yue, et al. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small, 2018, 14(35): e1802218. |
56 | YUE Lu, XU Wanyin, LI Kai, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science, 2021, 546: 149168. |
57 | WU Sheng, LU Xiaoyi, ZHANG Kaili, et al. Nitrogen/phosphorus dual-doped hard carbon anode with high initial coulombic efficiency for superior sodium storage[J]. Batteries & Supercaps, 2023, 6(1): 2200427. |
58 | WANG Liaoliao, WANG Juan, Dickon H L NG, et al. Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage[J]. Chemical Communications, 2021, 57(75): 9610-9613. |
59 | CHEN Chen, HUANG Ying, MENG Zhuoyue, et al. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage[J]. Journal of Materials Science & Technology, 2021, 76: 11-19. |
60 | JIN Qianzheng, LI Wei, WANG Kangli, et al. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage[J]. Advanced Functional Materials, 2020, 30(14): 1909907. |
61 | TANG Jialiang, Daniel Kyungbin KYE, Vilas G POL. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. |
62 | MOEEZ Iqra, JUNG Hun-Gi, Hee-Dae LIM, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. |
63 | LIU Mengchuang, ZHANG Junyao, GUO Shuhan, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-17627. |
64 | QIN Nannan, SUN Yanyan, HU Chao, et al. Boosting high initial coulombic efficiency of hard carbon by in situ electrochemical presodiation[J]. Journal of Energy Chemistry, 2023, 77: 310-316. |
65 | 郎俊伟, 张旭, 杨兵军, 等. 非水体系锂/钠离子电容器研究进展[J]. 中国科学:化学, 2018, 48(12): 1478-1513. |
LANG Junwei, ZHANG Xu, YANG Bingjun, et al. Research progress in nonaqueous lithium/sodium-ion capacitors[J]. Scientia Sinica Chimica, 2018, 48(12): 1478-1513. | |
66 | 戚琦, 徐佩珠, 田志东, 等. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062. |
QI Qi, XU Peizhu, TIAN Zhidong, et al. Recent advances of the electrode materials for sodium-ion capacitors[J]. Progress in Chemistry, 2022, 34(9): 2051-2062. | |
67 | ZHANG Zhihao, GU Zhihao, ZHANG Chenguang, et al. Sodium-ion capacitors: Recent development in electrode materials[J]. Batteries & Supercaps, 2021, 4(11): 1680-1700. |
68 | SUBBURAM Gokila, RAMACHANDRAN K, EL-KHODARY Sherif A, et al. Development of porous carbon nanosheets from polyvinyl alcohol for sodium-ion capacitors[J]. Chemical Engineering Journal, 2021, 415: 129012. |
69 | RAMACHANDRAN K, SUBBURAM Gokila, LIU Xianhu, et al. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor[J]. Rare Metals, 2022, 41(7): 2481-2490. |
70 | JIANG Chunhai, ZHOU Wenyang, ZOU Zhimin. Nitrogen and oxygen co-doped mesoporous carbon spheres as capacitive anode for high performance sodium-ion capacitors[J]. Journal of Materials Science & Technology, 2021, 83: 188-195. |
71 | WANG Kunfang, SUN Fei, SU Yanlin, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. |
72 | WANG Xiaoyan, HE Shenggong, CHEN Fuming, et al. Nitrogen-doped hard carbon as symmetric electrodes for sodium-ion capacitor[J]. Energy & Fuels, 2020, 34(10): 13144-13148. |
73 | ZHANG Litong, SUN Jingwen, ZHAO Hongan, et al. Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor[J]. Journal of Power Sources, 2020, 475: 228679. |
74 | LIU Mengyue, CAO Weishan, SONG Weihao, et al. Potassium oxysalt-assistant strategy towards heteroatom-doped porous carbon electrodes for high-performance Na-ion capacitors[J]. Journal of Power Sources, 2022, 541: 231688. |
75 | HU Fangyuan, LIU Siyang, LI Shengming, et al. High and ultra-stable energy storage from all-carbon sodium-ion capacitor with 3D framework carbon as cathode and carbon nanosheet as anode[J]. Journal of Energy Chemistry, 2021, 55: 304-312. |
76 | YUAN Jun, QIU Min, HU Xiang, et al. Pseudocapacitive vanadium nitride quantum dots modified one-dimensional carbon cages enable highly kinetics-compatible sodium ion capacitors[J]. ACS Nano, 2022, 16(9): 14807-14818. |
77 | WANG Chong, ZHAO Ning, LI Bohan, et al. Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20483-20492. |
78 | 邱珅, 曹余良, 艾新平, 等. 不同类型碳结构的储钠反应机理分析[J]. 中国科学: 化学, 2017, 47(5): 573-578. |
QIU Shen, CAO Yuliang, AI Xinping, et al. Discussion on the mechanism of sodium storage of different structural types of carbon material[J]. Scientia Sinica Chimica, 2017, 47(5): 573-578. | |
79 | 杨涵, 张一波, 李琦, 等. 面向实用化的钠离子电池碳负极: 进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
YANG Han, ZHANG Yibo, LI Qi, et al. Practical carbon anodes for sodium-ion batteries: Progress and challenge[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. | |
80 | DONG Ruiqi, WU Feng, BAI Ying, et al. Sodium storage mechanism and optimization strategies for hard carbon anode of sodium ion batteries[J]. Acta Chimica Sinica, 2021, 79(12): 1461. |
81 | QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
82 | STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. |
83 | ILIC Ivan K, SCHUTJAJEW Konstantin, ZHANG Wuyong, et al. Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes[J]. Carbon, 2022, 186: 55-63. |
84 | CAO Yuliang, XIAO Lifen, SUSHKO Maria L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. |
85 | LIAO Yongchao, LUO Fenqiang, Taiyu LYU, et al. Multi-channel rod structure hard carbon for high initial Coulombic efficiency and low-potential sodium storage[J]. Diamond and Related Materials, 2022, 129: 109392. |
86 | CHEN Xiaoyang, FANG Youlong, TIAN Jiyu, et al. Electrochemical insight into the sodium-ion storage mechanism on a hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18914-18922. |
87 | HOU Zhidong, LEI Da, JIANG Mingwei, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1367-1375. |
88 | CHENG Hongkuan, TANG Zheren, LUO Xingzhang, et al. Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery[J]. Science of the Total Environment, 2021, 777: 146120. |
89 | YU Kaihua, WANG Xinran, YANG Haoyi, et al. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 499-508. |
90 | SUN Ning, GUAN Zhaoruxin, LIU Yuwen, et al. Extended “adsorption-insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
91 | FAN Changling, ZHANG Ruisheng, LUO Xianghua, et al. Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries[J]. Carbon, 2023, 205: 353-364. |
92 | ALPTEKIN Hande, Heather AU, JENSEN Anders C S, et al. Sodium storage mechanism investigations through structural changes in hard carbons[J]. ACS Applied Energy Materials, 2020, 3(10): 9918-9927. |
93 | YIN Xiuping, ZHAO Yufeng, WANG Xuan, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small, 2022, 18(5): 2105568. |
94 | LUO Yuan, XU Yaya, LI Xuenuan, et al. Boosting the initial coulomb efficiency of sisal fiber-derived carbon anode for sodium ion batteries by microstructure controlling[J]. Nanomaterials, 2023, 13(5): 881. |
95 | HE Xiangxi, ZHAO Jiahua, LAI Weihong, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44358-44368. |
96 | CHEN Xiaoyang, TIAN Jiyu, LI Peng, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): 2200886. |
97 | JIANG Nan, CHEN Long, JIANG Hao, et al. Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage[J]. Small, 2022, 18(15): e2108092. |
98 | ZHAO Jiahua, HE Xiangxi, LAI Weihong, et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13(18): 2300444. |
[1] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[2] | YU Delei, HAN Kangshun, CHEN Yao, LIU Xiangchun, CUI Ping. Recent advances in electroreduction of CO2 to CO using single atom Ni, N co-doped carbon-material based catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3174-3186. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[5] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[6] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[7] | ZHANG Zhicheng, HAN Daliang, FAN Dinghui, TAO Ying, WENG Zhe, YANG Quanhong. Recent advances in crystal plane regulation of zinc metal anodes for intrinsically safe aqueous zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2504-2515. |
[8] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[9] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[10] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[11] | LI Long, XING Baolin, BAO Ti'ao, JIN Peng, ZENG Huihui, GUO Hui, ZHANG Yue, ZHANG Wenhao. Effect of mildly-expanded modification on coal-based graphite microstructure and lithium storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6259-6269. |
[12] | WU Shiyu, DU Zhiping, SHEN Jing, LI Jianfeng, CHENG Fangqin, ZHAO Huazhang. Treatment of wastewater by bio-electro-Fenton system: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5929-5942. |
[13] | LI Xing, HUANG Hongyu, OSAKA Yugo, HUHE Taoli, XIAO Linfa, LI Jun. Study on the influencing factors of the adsorption performance of carbon materials for the sulfur dioxide removal [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4963-4972. |
[14] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[15] | WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |