Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1637-1647.DOI: 10.16085/j.issn.1000-6613.2023-1600
• Resources and environmental engineering • Previous Articles
CHAI Duosheng1(), GAO Feng2, WU Youbing3, SUN Xin1(), HAO Ran1, YANG Yu2, JIAO Xiangfei1
Received:
2023-09-11
Revised:
2023-11-20
Online:
2024-04-11
Published:
2024-03-10
Contact:
SUN Xin
柴多生1(), 高峰2, 吴友兵3, 孙昕1(), 郝然1, 杨宇2, 焦翔飞1
通讯作者:
孙昕
作者简介:
柴多生(1995—),男,硕士研究生,主要研究方向为微咸水淡化。E-mail:cds1712@126.com。
基金资助:
CLC Number:
CHAI Duosheng, GAO Feng, WU Youbing, SUN Xin, HAO Ran, YANG Yu, JIAO Xiangfei. Reaction dynamics and influencing factors of capacitive deionization desalination using γ-Al2O3 / CuO-ACF[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1637-1647.
柴多生, 高峰, 吴友兵, 孙昕, 郝然, 杨宇, 焦翔飞. γ-Al2O3/CuO-ACF电吸附除盐的影响因素及反应动力学[J]. 化工进展, 2024, 43(3): 1637-1647.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1600
电极材料 | 外加电压 /V | 初始浓度 /mg·L-1 | SAC /mg·g-1 | 参考 文献 |
---|---|---|---|---|
ACF-HNO3 | 1.2 | 500 | 12.80 | [ |
NPC@ACF | 1.2 | 500 | 14.63 | [ |
Al2O3-ACF | 2.0 | 500 | 12.25 | [ |
ACF | 1.4 | 500 | 10.16 | 本工作 |
γ-Al2O3/CuO-ACF | 1.4 | 500 | 16.97 | 本工作 |
电极材料 | 外加电压 /V | 初始浓度 /mg·L-1 | SAC /mg·g-1 | 参考 文献 |
---|---|---|---|---|
ACF-HNO3 | 1.2 | 500 | 12.80 | [ |
NPC@ACF | 1.2 | 500 | 14.63 | [ |
Al2O3-ACF | 2.0 | 500 | 12.25 | [ |
ACF | 1.4 | 500 | 10.16 | 本工作 |
γ-Al2O3/CuO-ACF | 1.4 | 500 | 16.97 | 本工作 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Qm /mg·g-1 | KL | RL | R2 | Qm /mg·g-1 | KL | RL | |
0.8 | 0.9944 | 13.26 | 0.0048 | 0.8065 | 0.9988 | 11.12 | 0.0089 | 0.1841 |
1.0 | 0.9935 | 13.81 | 0.0053 | 0.7891 | 0.9960 | 14.06 | 0.0102 | 0.1633 |
1.2 | 0.9931 | 13.94 | 0.0067 | 0.7491 | 0.9966 | 15.20 | 0.0148 | 0.1189 |
1.4 | 0.9925 | 14.48 | 0.0080 | 0.7135 | 0.9912 | 15.73 | 0.0292 | 0.0640 |
1.6 | 0.9923 | 16.25 | 0.0086 | 0.6993 | 0.9946 | 19.05 | 0.0410 | 0.0465 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Qm /mg·g-1 | KL | RL | R2 | Qm /mg·g-1 | KL | RL | |
0.8 | 0.9944 | 13.26 | 0.0048 | 0.8065 | 0.9988 | 11.12 | 0.0089 | 0.1841 |
1.0 | 0.9935 | 13.81 | 0.0053 | 0.7891 | 0.9960 | 14.06 | 0.0102 | 0.1633 |
1.2 | 0.9931 | 13.94 | 0.0067 | 0.7491 | 0.9966 | 15.20 | 0.0148 | 0.1189 |
1.4 | 0.9925 | 14.48 | 0.0080 | 0.7135 | 0.9912 | 15.73 | 0.0292 | 0.0640 |
1.6 | 0.9923 | 16.25 | 0.0086 | 0.6993 | 0.9946 | 19.05 | 0.0410 | 0.0465 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||
---|---|---|---|---|---|---|
R2 | KF | n | R2 | KF | n | |
0.8 | 0.9689 | 0.1485 | 1.4858 | 0.9888 | 0.3918 | 1.9290 |
1.0 | 0.9706 | 0.1891 | 1.4570 | 0.9832 | 0.5065 | 1.9488 |
1.2 | 0.9765 | 0.1945 | 1.4270 | 0.9855 | 0.7124 | 1.9222 |
1.4 | 0.9894 | 0.2504 | 1.4531 | 0.9845 | 1.1903 | 2.0099 |
1.6 | 0.9915 | 0.2718 | 1.3894 | 0.9854 | 1.4228 | 1.9410 |
外加电压 /V | ACF | γ-Al2O3/CuO-ACF | ||||
---|---|---|---|---|---|---|
R2 | KF | n | R2 | KF | n | |
0.8 | 0.9689 | 0.1485 | 1.4858 | 0.9888 | 0.3918 | 1.9290 |
1.0 | 0.9706 | 0.1891 | 1.4570 | 0.9832 | 0.5065 | 1.9488 |
1.2 | 0.9765 | 0.1945 | 1.4270 | 0.9855 | 0.7124 | 1.9222 |
1.4 | 0.9894 | 0.2504 | 1.4531 | 0.9845 | 1.1903 | 2.0099 |
1.6 | 0.9915 | 0.2718 | 1.3894 | 0.9854 | 1.4228 | 1.9410 |
1 | ZHANG Douqing, LI Mingjun, JI Xiang, et al. Revealing potential of energy-saving behind emission reduction: A DEA-based empirical study[J]. Management of Environmental Quality: an International Journal, 2019, 30(4): 714-730. |
2 | TONG Yongjuan, ZHANG Qi, CAI Jiuju, et al. Water consumption and wastewater discharge in China’s steel industry[J]. Ironmaking & Steelmaking, 2018, 45(10): 868-877. |
3 | GENDEL Youri, ROMMERSKIRCHEN Alexandra Klara Elisabeth, DAVID Oana, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology[J]. Electrochemistry Communications, 2014, 46: 152-156. |
4 | YANG Zhiyu, JIN Linjian, LU Guoqian, et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance[J]. Advanced Functional Materials, 2014, 24(25): 3917-3925. |
5 | BLAIR John W, MURPHY George W. Electrochemical demineralization of water with porous electrodes of large surface area[M]//Advances in Chemistry. Washington D C: American Chemical Society, 1960: 206-223. |
6 | HAN Linchen, KARTHIKEYAN K G, ANDERSON Marc A, et al. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization[J]. Journal of Colloid and Interface Science, 2014, 430: 93-99. |
7 | WANG Hui, SHI Liyi, YAN Tingting, et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization[J]. Journal of Materials Chemistry A, 2014, 2(13): 4739-4750. |
8 | ZORNITTA Rafael L, GARCÍA-MATEOS Francisco J, LADO Julio J, et al. High-performance activated carbon from polyaniline for capacitive deionization[J]. Carbon, 2017, 123: 318-333. |
9 | ZHOU Jianen, YANG Qingyun, XIE Qiongyi, et al. Recent progress in Co-based metal-organic framework derivatives for advanced batteries[J]. Journal of Materials Science & Technology, 2022, 96: 262-284. |
10 | RASINES G, LAVELA P, MACÍAS C, et al. Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water[J]. Journal of Electroanalytical Chemistry, 2015, 741: 42-50. |
11 | LUO Guoming, WANG Yuzhi, GAO Lixin, et al. Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability[J]. Electrochimica Acta, 2018, 260: 656-663. |
12 | ZHAO Xiaoyu, WEI Hongxin, ZHAO Huachao, et al. Electrode materials for capacitive deionization: A review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416. |
13 | CHU Dawei, SONG Xiumei, TAN Lichao, et al. Polyvinyl pyrrolidone-induced assembly of NiCo-LDHs nanosheets: A facile method for fabricating three-dimensional flower-like microspheres with excellent supercapacitor performance[J]. Inorganic Chemistry Communications, 2019, 110: 107587. |
14 | ZHU Fangfang, LIU Weijing, LIU Yu, et al. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications[J]. Chemical Engineering Journal, 2020, 383: 123150. |
15 | 郭宁, 郭婷, 陈方方. 电容去离子脱盐影响因素的研究进展[J]. 四川化工, 2023, 26(3): 11-15. |
GUO Ning, GUO Ting, CHEN Fangfang. Research progress on influencing factors of capacitive deionization desalination[J]. Sichuan Chemical Industry, 2023, 26(3): 11-15. | |
16 | XU Lina, LI Jiao, SUN Haibin, et al. In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors[J]. Frontiers in Chemistry, 2019, 7: 420. |
17 | 李谦, 刘志英, 许海辉, 等. 负载Al2O3的活性碳纤维电吸附除盐研究[J]. 工业水处理, 2017, 37(9): 48-52. |
LI Qian, LIU Zhiying, XU Haihui, et al. Research on Al2O3-loaded activated carbon fiber for the electro-adsorptive desalination[J]. Industrial Water Treatment, 2017, 37(9): 48-52. | |
18 | FAN Guoli, LI Feng, EVANS David G, et al. Catalytic applications of layered double hydroxides: Recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
19 | LI Changming, WEI Min, EVANS David G, et al. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents[J]. Small, 2014, 10(22): 4469-4486. |
20 | REN Qidi, WANG Gang, WU Tingting, et al. Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6417-6425. |
21 | LI Kaijian, GUO Dengfeng, LIN Furong, et al. Electrosorption of copper ions by poly(m-phenylenediamine)/reduced graphene oxide synthesized via a one-step in situ redox strategy[J]. Electrochimica Acta, 2015, 166: 47-53. |
22 | LEI Xiaodong, WANG Bo, LIU Junfeng, et al. Three-dimensional NiAl-mixed metal oxide film: Preparation and capacitive deionization performances[J]. RSC Advances, 2014, 4(78): 41642-41648. |
23 | WU Qinghao, LIANG Dawei, AVRAHAM Eran, et al. Enhanced capacitive deionization of an integrated membrane electrode by thin layer spray-coating of ion exchange polymers on activated carbon electrode[J]. Desalination, 2020, 491: 114460. |
24 | ELANG BARRUNA A G, MUHAMAD NAUFAL R, NUGRAHA Mohammad Ridho, et al. Material characteristics and electrochemical performance of lithium-ion capacitor with activated carbon cathode derived from sugarcane bagasse[J]. IOP Conference Series: Earth and Environmental Science, 2021, 673(1): 012018. |
25 | Abdul HAI, ALQASSEM Bayan, BHARATH G, et al. Cobalt and nickel ferrites based capacitive deionization electrode materials for water desalination applications[J]. Electrochimica Acta, 2020, 363: 137083. |
26 | JABBAR Saja Mohsen. Synthesis of CuO nano structure via sol-gel and precipitation chemical methods[J]. Al-Khwarizmi Engineering Journal, 2017, 12(4): 126-131. |
27 | KANWAL Aisha, SAJJAD Shamaila, LEGHARI Sajjad Ahmed Khan, et al. Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst[J]. Journal of Physics and Chemistry of Solids, 2021, 151: 109899. |
28 | ZHENG Run, LIN Qixuan, MENG Ling, et al. Flexible phosphorus-doped activated carbon fiber paper in situ loading of CuO for degradation of phenol[J]. Separation and Purification Technology, 2022, 298: 121619. |
29 | CHEN Baoliang, CHEN Zaiming, Shaofang LYU. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2): 716-723. |
30 | DALMASCHIO Cleocir José, MASTELARO Valmor R, NASCENTE Pedro, et al. Oxide surface modification: Synthesis and characterization of zirconia-coated alumina[J]. Journal of Colloid and Interface Science, 2010, 343(1): 256-262. |
31 | KOTOMIN E A, STASHANS A, KANTOROVICH L N, et al. Calculations of the geometry and optical properties of FMg centers and dimer (F2-type) centers in corundum crystals[J]. Physical Review B, 1995, 51(14): 8770-8778. |
32 | XI Wen, LI Haibo. Vertically-aligned growth of CuAl-layered double oxides on reduced graphene oxide for hybrid capacitive deionization with superior performance[J]. Environmental Science Nano, 2020, 7: 764-772. |
33 | Vinod Vellora Thekkae Padil, Černík Miroslav. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application[J]. International Journal of Nanomedicine, 2013, 8: 889-898. |
34 | SHARMA Ajit, LEE Byeong-Kyu. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol[J]. Journal of Environmental Management, 2016, 181: 563-573. |
35 | LIU Shiqi, ZHANG Zichen, HUANG Fei, et al. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation[J]. Applied Catalysis B: Environmental, 2021, 286: 119921. |
36 | HUPP Joseph T, POEPPELMEIER Kenneth R. Better living through nanopore chemistry[J]. Science, 2005, 309(5743): 2008-2009. |
37 | MAO Ping, QI Bingbing, LIU Ying, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution[J]. Journal of Solid State Chemistry, 2016, 237: 274-283. |
38 | WU Tingting, WANG Gang, DONG Qiang, et al. Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode[J]. Electrochimica Acta, 2015, 176: 426-433. |
39 | Lijuan MEN, CHEN Chunyu, LIU An, et al. N-doped porous carbon-based capacitive deionization electrode materials loaded with activated carbon fiber for water desalination applications[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107943. |
40 | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007, 290(1/2): 86-94. |
41 | GABELICH Christopher J, TRAN Tri D, I H Mel SUFFET. Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J]. Environmental Science & Technology, 2002, 36(13): 3010-3019. |
42 | WANG Changming, SONG Haiou, ZHANG Quanxing, et al. Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration[J]. Desalination, 2015, 365: 407-415. |
43 | WIMALASIRI Yasodinee, MOSSAD Mohamed, ZOU Linda. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization[J]. Desalination, 2015, 357: 178-188. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[3] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[4] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
[5] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[6] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[7] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[8] | MAO Tingting, LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai. Solar interfacial evaporation system and materials for water treatment and organic solvent purification [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 178-193. |
[9] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[10] | DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114. |
[11] | LI Ao, WANG Hongyang, SUN Yuwei, WANG Xu, WANG Xia, ZHU Guangcan. Model and optimization of flow electrode capacitive deionization for ammonium ion removal [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2123-2131. |
[12] | ZHANG Qun, CHEN Chongjun, XIE Jiawei, ZOU Xinyi. Research progress on the microbial desalination cell for high-salt wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 974-980. |
[13] | SUN Huilian, SUN Lingjie, ZHAO Yang, SUN Xiang, ZHANG Lunxiang. Research on the application of hydrate-based method in the treatment of actual complex wastewater and high salt wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6672-6679. |
[14] | CAO Wensheng, XU Jianzhuang, GUO Zhaochun, LIN Wensheng, BLUTH Christoph. Dynamic simulation of cold energy desalination using ice-sheet machine [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 61-68. |
[15] | XIE Songchen, WEN Jianping, PANG Zhiguang, HOU Chunguang, LI Zhixia, JIN Dunshang, PENG Yuelian. Research progress of membrane fouling and wetting in membrane distillation process for desalination [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3942-3956. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |