Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4490-4505.DOI: 10.16085/j.issn.1000-6613.2023-1225
• Materials science and technology • Previous Articles
MA Guangxin1,2(), LI Weiman1(), ZHOU Xin1,2, CHEN Yunfa1,3()
Received:
2023-07-18
Revised:
2023-08-15
Online:
2024-09-02
Published:
2024-08-15
Contact:
LI Weiman, CHEN Yunfa
马广鑫1,2(), 李伟曼1(), 周欣1,2, 陈运法1,3()
通讯作者:
李伟曼,陈运法
作者简介:
马广鑫(1999—),男,硕士研究生,研究方向为复合吸湿材料。E-mail:maguangxin21@mails.ucas.ac.cn。
基金资助:
CLC Number:
MA Guangxin, LI Weiman, ZHOU Xin, CHEN Yunfa. Progress of moisture generation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4490-4505.
马广鑫, 李伟曼, 周欣, 陈运法. 湿气发电技术研究进展[J]. 化工进展, 2024, 43(8): 4490-4505.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1225
项目 | 离子扩散 | 流动电位 |
---|---|---|
能量转换 | 化学能→电能 | 其他能量→机械能→电能 |
机理类型 | 化学变化 | 物理变化 |
作用界面 | 气-液-固 | 液-固 |
材料维度 | 3D | 2D |
发电结构 | 梯度结构 | 微/纳通道结构 |
输出电流 | 交流电 | 直流电 |
输出方式 | 间歇性 | 连续性 |
发电过程 | ①材料吸收水团簇; ②形成移动载流子梯度; ③离子扩散生电 | ①液-固界面作用产生EDL; ②外力驱动下液体流动; ③反离子沿液体运动方向移动 |
项目 | 离子扩散 | 流动电位 |
---|---|---|
能量转换 | 化学能→电能 | 其他能量→机械能→电能 |
机理类型 | 化学变化 | 物理变化 |
作用界面 | 气-液-固 | 液-固 |
材料维度 | 3D | 2D |
发电结构 | 梯度结构 | 微/纳通道结构 |
输出电流 | 交流电 | 直流电 |
输出方式 | 间歇性 | 连续性 |
发电过程 | ①材料吸收水团簇; ②形成移动载流子梯度; ③离子扩散生电 | ①液-固界面作用产生EDL; ②外力驱动下液体流动; ③反离子沿液体运动方向移动 |
发电材料 | 电极 | 结构 | 梯度来源/流动电位 | 湿度/% | 输出电压/V | 电流密度/mA·cm-2 | 供电时长 | 参考文献 |
---|---|---|---|---|---|---|---|---|
GQDs | Au/Au | 平面 | 官能团 | 70 | 0.27 | 27.7 | 周期供电 | [ |
GO | rGO/rGO | 纤维 | 官能团 | 65 | 0.4 | 1 | 周期供电 | [ |
GOF | Au/Au | 夹层 | 官能团 | 30 | 0.02 | 5×10-3 | 周期供电 | [ |
g-3D-GO | Al/Al | 夹层 | 官能团 | 75 | 0.26 | 3.2 | 周期供电 | [ |
GO-g-rGO | Ag/Au | 平面 | 官能团 | 85 | 1.5 | 1×10-4 | 周期供电 | [ |
GO | Ag/Ag | 同轴光纤 | 官能团 | 70 | 0.3 | 6.3×10-4 | 周期供电 | [ |
CNT | 银涂料 | 平面 | 水含量 | 80 | 0.348 | 7×10-1 | 周期供电 | [ |
炭黑(CB) | 银涂料 | 非对称平面 | 水含量 | 70 | 0.6 | 1.17×10-2 | 100h | [ |
石墨(C) | 银涂料 | 平面 | 官能团 | 70 | 0.23 | 4×10-4 | 周期供电 | [ |
PSSA | 多孔Au/Au | 非对称电极 | 水含量 | 80 | 0.8 | 1×10-1 | 24h | [ |
g-3D-PPy | Au/Au | 夹层 | 离子梯度 | 85 | 0.06 | 1.2×10-2 | 周期供电 | [ |
g-1D-PPy | 多孔Au/Au | 夹层 | 离子梯度 | 75 | 0.075 | — | 周期供电 | [ |
Mg2+-PPy | 多孔Au/Au | 夹层 | 水含量 | 75 | 0.108 | — | 周期供电 | [ |
Al3+-PPy | 多孔Au/Au | 夹层 | 水含量 | 75 | 0.143 | — | 周期供电 | [ |
GO-PSSA | Au/Ag | 夹层 | 水含量 | 80 | 0.6 | 1×10-3 | 120h | [ |
PSS-PVA | Ag-NW/Ag | 非对称电极 | 水含量 | 85 | 0.6 | 1 | 周期供电 | [ |
PVA-PA | Au/Ag | 夹层 | 水含量 | 85 | 0.8 | 0.24 | 1000h | [ |
NafionTM膜 | 碳 | 夹层 | 水含量 | 68.5 | 1.86 | 1.01×10-2 | 5min | [ |
PHU-Ti3C2 | Al/Cu | 非对称电极 | 水含量 | 35 | 1.1 | 4.8×10-2 | 1.5h | [ |
g-PDA | Ag/Ag | 夹层 | 官能团 | 85 | 0.52 | 5×10-1 | 0.5h | [ |
蛋白质 | Al/Cu | 夹层 | 水含量 | 55 | 0.71 | 7.75×10-3 | 周期供电 | [ |
打印纸 | Au/PET-ITO | 夹层 | 水含量 | 70 | 0.25 | 1.5×10-5 | 周期供电 | [ |
打印纸 | MXene | 夹层 | 官能团 | 73 | 0.275 | 7.6×10-3 | 周期供电 | [ |
纤维素 | Ag/Ag | 夹层 | 水含量 | 85 | 0.3 | 8×10-5 | 50h | [ |
木材 | Pt/Pt | 夹层 | 官能团 | 85 | 0.57 | — | 24h | [ |
纸-CB | 银涂料 | 平面 | 水含量 | 50 | 0.35 | 5.65×10-3 | 120h | [ |
玉米秸秆 | 碳墨 | 平面 | 流动电位 | 80 | 0.6 | 5.0×10-4 | 40h | [ |
纤维素 | Al/Al | 夹层 | 流动电位 | 99 | 0.65 | 1.0×10-4 | 18h | [ |
MoS2 | Cu/Cu | 平面 | 晶相梯度 | 75 | 0.019 | 4.2×10-3 | 10min | [ |
SiNWs-PDDA | CNT/Ag | 夹层 | 水含量 | 60 | 1 | 8.2 ×10-3 | 74h | [ |
TiO2 | Al/ITO | 夹层 | 流动电位 | 85 | 0.5 | 8.0×10-3 | 周期供电 | [ |
发电材料 | 电极 | 结构 | 梯度来源/流动电位 | 湿度/% | 输出电压/V | 电流密度/mA·cm-2 | 供电时长 | 参考文献 |
---|---|---|---|---|---|---|---|---|
GQDs | Au/Au | 平面 | 官能团 | 70 | 0.27 | 27.7 | 周期供电 | [ |
GO | rGO/rGO | 纤维 | 官能团 | 65 | 0.4 | 1 | 周期供电 | [ |
GOF | Au/Au | 夹层 | 官能团 | 30 | 0.02 | 5×10-3 | 周期供电 | [ |
g-3D-GO | Al/Al | 夹层 | 官能团 | 75 | 0.26 | 3.2 | 周期供电 | [ |
GO-g-rGO | Ag/Au | 平面 | 官能团 | 85 | 1.5 | 1×10-4 | 周期供电 | [ |
GO | Ag/Ag | 同轴光纤 | 官能团 | 70 | 0.3 | 6.3×10-4 | 周期供电 | [ |
CNT | 银涂料 | 平面 | 水含量 | 80 | 0.348 | 7×10-1 | 周期供电 | [ |
炭黑(CB) | 银涂料 | 非对称平面 | 水含量 | 70 | 0.6 | 1.17×10-2 | 100h | [ |
石墨(C) | 银涂料 | 平面 | 官能团 | 70 | 0.23 | 4×10-4 | 周期供电 | [ |
PSSA | 多孔Au/Au | 非对称电极 | 水含量 | 80 | 0.8 | 1×10-1 | 24h | [ |
g-3D-PPy | Au/Au | 夹层 | 离子梯度 | 85 | 0.06 | 1.2×10-2 | 周期供电 | [ |
g-1D-PPy | 多孔Au/Au | 夹层 | 离子梯度 | 75 | 0.075 | — | 周期供电 | [ |
Mg2+-PPy | 多孔Au/Au | 夹层 | 水含量 | 75 | 0.108 | — | 周期供电 | [ |
Al3+-PPy | 多孔Au/Au | 夹层 | 水含量 | 75 | 0.143 | — | 周期供电 | [ |
GO-PSSA | Au/Ag | 夹层 | 水含量 | 80 | 0.6 | 1×10-3 | 120h | [ |
PSS-PVA | Ag-NW/Ag | 非对称电极 | 水含量 | 85 | 0.6 | 1 | 周期供电 | [ |
PVA-PA | Au/Ag | 夹层 | 水含量 | 85 | 0.8 | 0.24 | 1000h | [ |
NafionTM膜 | 碳 | 夹层 | 水含量 | 68.5 | 1.86 | 1.01×10-2 | 5min | [ |
PHU-Ti3C2 | Al/Cu | 非对称电极 | 水含量 | 35 | 1.1 | 4.8×10-2 | 1.5h | [ |
g-PDA | Ag/Ag | 夹层 | 官能团 | 85 | 0.52 | 5×10-1 | 0.5h | [ |
蛋白质 | Al/Cu | 夹层 | 水含量 | 55 | 0.71 | 7.75×10-3 | 周期供电 | [ |
打印纸 | Au/PET-ITO | 夹层 | 水含量 | 70 | 0.25 | 1.5×10-5 | 周期供电 | [ |
打印纸 | MXene | 夹层 | 官能团 | 73 | 0.275 | 7.6×10-3 | 周期供电 | [ |
纤维素 | Ag/Ag | 夹层 | 水含量 | 85 | 0.3 | 8×10-5 | 50h | [ |
木材 | Pt/Pt | 夹层 | 官能团 | 85 | 0.57 | — | 24h | [ |
纸-CB | 银涂料 | 平面 | 水含量 | 50 | 0.35 | 5.65×10-3 | 120h | [ |
玉米秸秆 | 碳墨 | 平面 | 流动电位 | 80 | 0.6 | 5.0×10-4 | 40h | [ |
纤维素 | Al/Al | 夹层 | 流动电位 | 99 | 0.65 | 1.0×10-4 | 18h | [ |
MoS2 | Cu/Cu | 平面 | 晶相梯度 | 75 | 0.019 | 4.2×10-3 | 10min | [ |
SiNWs-PDDA | CNT/Ag | 夹层 | 水含量 | 60 | 1 | 8.2 ×10-3 | 74h | [ |
TiO2 | Al/ITO | 夹层 | 流动电位 | 85 | 0.5 | 8.0×10-3 | 周期供电 | [ |
材料 | 优势 | 不足 |
---|---|---|
无机碳材料 | 高比表面积、表面性能可调节 | 循环稳定性、机械强度较差 |
聚合物材料 | 吸湿能力优异、网络结构稳定 | 易溶胀形变、结构稳定性差 |
生物材料 | 表面基团丰富、生物相容性好 | 循环稳定性较差 |
金属化合物材料 | 高耐水性、晶体结构稳定 | 离子解离弱、水扩散动力学慢 |
材料 | 优势 | 不足 |
---|---|---|
无机碳材料 | 高比表面积、表面性能可调节 | 循环稳定性、机械强度较差 |
聚合物材料 | 吸湿能力优异、网络结构稳定 | 易溶胀形变、结构稳定性差 |
生物材料 | 表面基团丰富、生物相容性好 | 循环稳定性较差 |
金属化合物材料 | 高耐水性、晶体结构稳定 | 离子解离弱、水扩散动力学慢 |
1 | WON Daeyeon, BANG Junhyuk, CHOI Seok Hwan, et al. Transparent electronics for wearable electronics application[J]. Chemical Reviews, 2023, 123(16): 9982-10078. |
2 | MA Dongling. Solar energy and solar cells[J]. Nanomaterials, 2021, 11(10): 2682. |
3 | LU Lijun, DING Wenqing, LIU Jingquan, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251. |
4 | SONG Yiding, WANG Nan, WANG Yuanhao, et al. Direct current triboelectric nanogenerators[J]. Advanced Energy Materials, 2020, 10(45): 2002756. |
5 | ZHANG Ding, WANG Yuanhao, YANG Ya. Design, performance, and application of thermoelectric nanogenerators[J]. Small, 2019, 15(32): e1805241. |
6 | HUANG Yaxin, CHENG Huhu, QU Liangti. Emerging materials for water-enabled electricity generation[J]. ACS Materials Letters, 2021, 3(2): 193-209. |
7 | WANG Xiaofan, LIN Fanrong, WANG Xiang, et al. Hydrovoltaic technology: From mechanism to applications[J]. Chemical Society Reviews, 2022, 51(12): 4902-4927. |
8 | ZHANG Zhuhua, LI Xuemei, YIN Jun, et al. Emerging hydrovoltaic technology[J]. Nature Nanotechnology, 2018, 13(12): 1109-1119. |
9 | SOARES Lucas C, BERTAZZO Sérgio, BURGO Thiago A L, et al. A new mechanism for the electrostatic charge build-up and dissipation in dielectrics[J]. Journal of the Brazilian Chemical Society, 2008, 19(2): 277-286. |
10 | GOUVEIA Rubia F, GALEMBECK Fernando. Electrostatic charging of hydrophilic particles due to water adsorption[J]. Journal of the American Chemical Society, 2009, 131(32): 11381-11386. |
11 | DUCATI Telma R D, SIMÕES Luís H, GALEMBECK Fernando. Charge partitioning at gas-solid interfaces: Humidity causes electricity buildup on metals[J]. Langmuir, 2010, 26(17): 13763-13766. |
12 | ZHAO Fei, CHENG Huhu, ZHANG Zhipan, et al. Direct power generation from a graphene oxide film under moisture[J]. Advanced Materials, 2015, 27(29): 4351-4357. |
13 | SHEN Daozhi, XIAO Ming, ZOU Guisheng, et al. Self-powered wearable electronics based on moisture enabled electricity generation[J]. Advanced Materials, 2018, 30(18): e1705925. |
14 | LIU Xiaomeng, GAO Hongyan, WARD Joy E, et al. Power generation from ambient humidity using protein nanowires[J]. Nature, 2020, 578(7796): 550-554. |
15 | WANG Haiyan, SUN Yilin, HE Tiancheng, et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000V output[J]. Nature Nanotechnology, 2021, 16(7): 811-819. |
16 | NANDAKUMAR Dilip Krishna, VAGHASIYA Jayraj V, YANG Lin, et al. A solar cell that breathes in moisture for energy generation[J]. Nano Energy, 2020, 68: 104263. |
17 | SHEN Daozhi, XIAO Ming, XIAO Yu, et al. Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14249-14255. |
18 | SONG Yuhang, SHU Chang, SONG Zheheng, et al. Self-powered health monitoring with ultrafast response and recovery enabled by nanostructured silicon moisture-electric generator[J]. Chemical Engineering Journal, 2023, 468: 143797. |
19 | MOREIRA Kelly S, LERMEN Diana, DOS SANTOS Leandra P, et al. Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator[J]. Energy & Environmental Science, 2021, 14(1): 353-358. |
20 | DE LIMA BURGO Thiago Augusto, REZENDE Camila Alves, BERTAZZO Sérgio, et al. Electric potential decay on polyethylene: Role of atmospheric water on electric charge build-up and dissipation[J]. Journal of Electrostatics, 2011, 69(4): 401-409. |
21 | LIU Zheng, ZHENG Kaihong, HU Lijun, et al. Surface-energy generator of single-walled carbon nanotubes and usage in a self-powered system[J]. Advanced Materials, 2010, 22(9): 999-1003. |
22 | OLTHUIS Wouter, SCHIPPERS Bob, EIJKEL Jan, et al. Energy from streaming current and potential[J]. Sensors and Actuators B: Chemical, 2005, 111: 385-389. |
23 | YIN Jun, ZHANG Zhuhua, LI Xuemei, et al. Waving potential in graphene[J]. Nature Communications, 2014, 5: 3582. |
24 | YIN Jun, LI Xuemei, YU Jin, et al. Generating electricity by moving a droplet of ionic liquid along graphene[J]. Nature Nanotechnology, 2014, 9(5): 378-383. |
25 | ZHANG Yaoxin, ZHANG Hong, XIONG Ting, et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation[J]. Energy & Environmental Science, 2020, 13(12): 4891-4902. |
26 | LUO Jingshan, Jeong-Hyeok IM, MAYER Matthew T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts[J]. Science, 2014, 345(6204): 1593-1596. |
27 | YANG Weiqing, Lili LYU, LI Xiankai, et al. Quaternized silk nanofibrils for electricity generation from moisture and ion rectification[J]. ACS Nano, 2020, 14(8): 10600-10607. |
28 | KWON Giyun, LEE Sechan, HWANG Jinyeon, et al. Multi-redox molecule for high-energy redox flow batteries[J]. Joule, 2018, 2(9): 1771-1782. |
29 | 张玮峰, 王荦敏, 邓元. 基于还原-冷压制备的Janus湿气诱导水伏发电GO-rGO复合材料[J]. 复合材料学报, 2023, 40(12): 6630-6638. |
ZHANG Weifeng, WANG Luomin, DENG Yuan. Janus moisture induced hydrovoltaic electricity GO-rGO composite material via reduction and tabletting method[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6630-6638. | |
30 | HUANG Yaxin, CHENG Huhu, YANG Ce, et al. All-region-applicable, continuous power supply of graphene oxide composite[J]. Energy & Environmental Science, 2019, 12(6): 1848-1856. |
31 | WANG Haiyan, HE Tiancheng, HAO Xuanzhang, et al. Moisture adsorption-desorption full cycle power generation[J]. Nature Communications, 2022, 13: 2524. |
32 | 孙宁. 具永久电荷一维Poisson-Nernst-Planck模型的稳态解及其在离子通道中的应用[D]. 长春: 吉林大学, 2022. |
SUN Ning. Steady-state solution of one-dimensional Poisson-Nernst-Planck model with permanent charge and its application in ion channel[D].Changchun: Jilin University, 2022. | |
33 | BAI Jiaxin, HU Yajie, GUANG Tianlei, et al. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments[J]. Energy & Environmental Science, 2022, 15(7): 3086-3096. |
34 | ZHAO Fei, LIANG Yuan, CHENG Huhu, et al. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks[J]. Energy & Environmental Science, 2016, 9(3): 912-916. |
35 | XU Wanghuai, SONG Yuxin, XU Ronald X, et al. Electrohydrodynamic and hydroelectric effects at the water-solid interface: From fundamentals to applications[J]. Advanced Materials Interfaces, 2021, 8(2): 2000670. |
36 | WALL Staffan. The history of electrokinetic phenomena[J]. Current Opinion in Colloid & Interface Science, 2010, 15(3): 119-124. |
37 | XUE Guobin, XU Ying, DING Tianpeng, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321. |
38 | TAN Jin, FANG Sunmiao, ZHANG Zhuhua, et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation[J]. Nature Communications, 2022, 13(1): 3643. |
39 | XU Tong, DING Xiaoteng, HUANG Yaxin, et al. An efficient polymer moist-electric generator[J]. Energy & Environmental Science, 2019, 12(3): 972-978. |
40 | XU Tong, DING Xiaoteng, SHAO Changxiang, et al. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules[J]. Small, 2018, 14(14): e1704473. |
41 | GONG Feng, LI Hao, ZHOU Qiang, et al. Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation[J]. Nano Energy, 2020, 74: 104922. |
42 | Yulin LYU, GONG Feng, LI Hao, et al. A flexible electrokinetic power generator derived from paper and ink for wearable electronics[J]. Applied Energy, 2020, 279: 115764. |
43 | TAN Jin, WANG Xiang, CHU Weicun, et al. Harvesting energy from atmospheric water: Grand challenges in continuous electricity generation[J]. Advanced Materials, 2024, 36(12): e2211165. |
44 | YANG Kaijie, PAN Tingting, LEI Qiong, et al. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization[J]. Environmental Science & Technology, 2021, 55(10): 6542-6560. |
45 | XU Tong, DING Xiaoteng, CHENG Huhu, et al. Moisture-enabled electricity from hygroscopic materials: A new type of clean energy[J]. Advanced Materials, 2024, 36(12): e2209661. |
46 | SUN Zhaoyang, WEN Xian, WANG Liming, et al. Emerging design principles, materials, and applications for moisture-enabled electric generation[J]. eScience, 2022, 2(1): 32-46. |
47 | LIANG Yuan, ZHAO Fei, CHENG Zhihua, et al. Self-powered wearable graphene fiber for information expression[J]. Nano Energy, 2017, 32: 329-335. |
48 | HUANG Yaxin, CHENG Huhu, SHI Gaoquan, et al. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38170-38175. |
49 | LUO Zhiling, LIU Changhong, FAN Shoushan. A moisture induced self-charging device for energy harvesting and storage[J]. Nano Energy, 2019, 60: 371-376. |
50 | SHEN Daozhi, DULEY Walter W, PENG Peng, et al. Moisture-enabled electricity generation: From physics and materials to self-powered applications[J]. Advanced Materials, 2020, 32(52): e2003722. |
51 | ZHANG Yaoxin, GUO Shuai, YU Zhigen, et al. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage[J]. Advanced Materials, 2022, 34(21): e2201228. |
52 | 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895. |
JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895. | |
53 | NIE Xiaowei, JI Bingxue, CHEN Nan, et al. Gradient doped polymer nanowire for moistelectric nanogenerator[J]. Nano Energy, 2018, 46: 297-304. |
54 | WANG Haiyan, CHENG Huhu, HUANG Yaxin, et al. Transparent, self-healing, arbitrary tailorable moist-electric film generator[J]. Nano Energy, 2020, 67: 104238. |
55 | XUE Jiangli, ZHAO Fei, HU Chuangang, et al. Vapor-activated power generation on conductive polymer[J]. Advanced Functional Materials, 2016, 26(47): 8784-8792. |
56 | FENG Zihao, ZHAO Wei, YANG Zhengxin, et al. Energy harvesting by vitrimer-based moist-electric generators[J]. Journal of Materials Chemistry A, 2022, 10(21): 11524-11534. |
57 | LI Lianhui, CHEN Zhigang, HAO Mingming, et al. Moisture-driven power generation for multifunctional flexible sensing systems[J]. Nano Letters, 2019, 19(8): 5544-5552. |
58 | LI Qing, WANG Fei, ZHANG Yaoxin, et al. Biopolymers for hygroscopic material development[J]. Advanced Materials, 2024, 36(12): e2209479. |
59 | CHEN Si, XIA Hong, NI Qingqing. A sustainable, continuously expandable, wearable breath moisture-induced electricity generator[J]. Carbon, 2022, 194: 104-113. |
60 | SUN Zhaoyang, WEN Xian, GUO Shuai, et al. Weavable yarn-shaped moisture-induced electric generator[J]. Nano Energy, 2023, 116: 108748. |
61 | SUN Qingqing, QIAN Binbin, Koichiro UTO, et al. Functional biomaterials towards flexible electronics and sensors[J]. Biosensors & Bioelectronics, 2018, 119: 237-251. |
62 | LI Mingjie, ZONG Lu, YANG Weiqing, et al. Biological nanofibrous generator for electricity harvest from moist air flow[J]. Advanced Functional Materials, 2019, 29(32): 1901798. |
63 | Quanqian LYU, PENG Bolun, XIE Zhanjun, et al. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57373-57381. |
64 | Jaehyeong BAE, YUN Tae Gwang, Bong Lim SUH, et al. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle[J]. Energy & Environmental Science, 2020, 13(2): 527-534. |
65 | ZHOU Xiaobing, ZHANG Wenluan, ZHANG Chenglin, et al. Harvesting electricity from water evaporation through microchannels of natural wood[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 11232-11239. |
66 | 吕玉林. 基于湿度梯度的生物质微发电系统研究[D]. 南京: 东南大学, 2021. |
Yulin LYU. Study on biomass micro power-generation system based on humidity gradient[D]. Nanjing: Southeast University, 2021. | |
67 | MANDAL Suman, ROY Satyajit, MANDAL Ajoy, et al. Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors[J]. ACS Applied Electronic Materials, 2020, 2(3): 780-789. |
68 | GAO Xue, XU Tong, SHAO Changxiang, et al. Electric power generation using paper materials[J]. Journal of Materials Chemistry A, 2019, 7(36): 20574-20578. |
69 | LI Zixiu, WANG Jian, DAI Lei, et al. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55205-55214. |
70 | HAN Xiao, ZHANG Weihua, CHE Xinpeng, et al. Synergetic and persistent harvesting of electricity and potable water from ambient moisture with biohybrid fibrils[J]. Journal of Materials Chemistry A, 2022, 10(15): 8356-8363. |
71 | HE Dunren, YANG Yaocheng, ZHOU Yuan, et al. Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture[J]. Nano Energy, 2021, 81: 105630. |
72 | WU Yanfei, SHAO Beibei, SONG Zheheng, et al. A hygroscopic Janus heterojunction for continuous moisture-triggered electricity generators[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19569-19578. |
73 | HUANG Yaxin, CHENG Huhu, YANG Ce, et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts[J]. Nature Communications, 2018, 9(1): 4166. |
74 | SHAO Changxiang, GAO Jian, XU Tong, et al. Wearable fiberform hygroelectric generator[J]. Nano Energy, 2018, 53: 698-705. |
75 | LEE Sanghee, JANG Hansol, LEE Hansol, et al. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26970-26975. |
76 | CHEN Nan, LIU Qianwen, LIU Chao, et al. MEG actualized by high-valent metal carrier transport[J]. Nano Energy, 2019, 65: 104047. |
77 | YANG Su, TAO Xiaoming, CHEN Wei, et al. Ionic hydrogel for efficient and scalable moisture-electric generation[J]. Advanced Materials, 2022, 34(21): e2200693. |
78 | LIU Chang, WANG Sijia, WANG Xun, et al. Hydrovoltaic energy harvesting from moisture flow using an ionic polymer-hydrogel-carbon composite[J]. Energy & Environmental Science, 2022, 15(6): 2489-2498. |
79 | YANG Luyu, ZHANG Lei, SUN Dongping. Harvesting electricity from atmospheric moisture by engineering an organic acid gradient in paper[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53615-53626. |
80 | CAI Tailong, LAN Lingyi, PENG Bo, et al. Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation[J]. Nano Letters, 2022, 22(16): 6476-6483. |
81 | LIU Junyang, CAI Xixi, WANG Yi, et al. Moisture-induced electrical power generation with waste activated sludge[J]. Chemical Engineering Journal, 2023, 472: 144868. |
82 | CHEN Fandi, ZHANG Shuo, GUAN Peiyuan, et al. High-performance flexible graphene oxide-based moisture-enabled nanogenerator via multilayer heterojunction engineering and power management system[J]. Small, 2023: e2304572. |
83 | ZHANG Haotian, HE Nan, WANG Bingsen, et al. High-performance, highly stretchable, flexible moist-electric generators via molecular engineering of hydrogels[J]. Advanced Materials, 2023, 35(20): e2370140. |
84 | HAN Yuyang, LU Bing, SHAO Changxiang, et al. A hygroelectric power generator with energy self-storage[J]. Chemical Engineering Journal, 2020, 384: 123366. |
85 | YAN Huping, LIU Zhen, QI Ronghui. A review of humidity gradient-based power generator: Devices, materials and mechanisms[J]. Nano Energy, 2022, 101: 107591. |
86 | DUAN Zaihua, YUAN Zhen, JIANG Yadong, et al. Power generation humidity sensor based on primary battery structure[J]. Chemical Engineering Journal, 2022, 446: 136910. |
87 | FARAMARZI Paniz, KIM Byeunggon, YOU Jae Bem, et al. CNT-functionalized electrospun fiber mat for a stretchable moisture-driven power generator[J]. Journal of Materials Chemistry C, 2023, 11(6): 2206-2216. |
88 | GUAN Peiyuan, ZHU Renbo, HU Guangyu, et al. Recent development of moisture-enabled-electric nanogenerators[J]. Small, 2022, 18(46): e2204603. |
89 | SUN Zhaoyang, FENG Lanlan, WEN Xian, et al. Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts[J]. Materials Horizons, 2021, 8(8): 2303-2309. |
90 | ZHENG Shuang, TANG Jiayue, Dong LYU,et al. Continuous energy harvesting from ubiquitous humidity gradients using liquid‐infused nanofluidics[J]. Advanced Materials, 2022, 34(4): e2106410. |
91 | YANG Ce, HUANG Yaxin, CHENG Huhu, et al. Rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Advanced Materials, 2019, 31(2): e1805705. |
92 | LI Jia, LIU Kang, DING Tianpeng, et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator[J]. Nano Energy, 2019, 58: 797-802. |
93 | Andreas HOLLÄNDER, Stefan KRÖPKE. Polymer surface treatment with SO2-containing plasmas[J]. Plasma Processes and Polymers, 2010, 7(5): 390-402. |
94 | BAI Jiaxin, HUANG Yaxin, WANG Haiyan, et al. Sunlight-coordinated high-performance moisture power in natural conditions[J]. Advanced Materials, 2022, 34(10): e2103897. |
95 | REN Guoping, HU Qichang, YE Jie, et al. All-biobased hydrovoltaic-photovoltaic electricity generators for all-weather energy harvesting[J]. Research, 2022, 2022: 9873203. |
[1] | LI Haoyang, ZHANG Wei, LI Xiaosen, XU Chungang. Research process of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6285-6294. |
[2] | Hong CHEN, Jun WU, Chen CHEN, Zhi TU, Li’e YU, Enzhe YANG, Min YANG, Benyi XIAO. Advances in biohydrogen production from anaerobic co-fermentation of organic wastes [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 440-450. |
[3] | ZHAO Yongzhi, MENG Bo, CHEN Linxin, WANG Geng, ZHENG Jinyang, GU Chaohua, ZHANG Xin, ZHANG Junfeng. Utilization status of hydrogen energy [J]. Chemical Industry and Engineering Progree, 2015, 34(09): 3248-3255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |