1 |
BATALHA N, MORISSET S, PINARD L, et al. BEA zeolite nanocrystals dispersed over alumina for n-hexadecane hydroisomerization[J]. Microporous and Mesoporous Materials, 2013, 166: 161-166.
|
2 |
ZHANG Yadong, LIU Dong, LOU Bin, et al. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite[J]. Fuel, 2018, 226: 204-212.
|
3 |
WANG Yudan, TAO Zhichao, WU Baoshan, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. Journal of Catalysis, 2015, 322: 1-13.
|
4 |
CHAI Zhibo, Enjing LYU, ZHANG Huaike, et al. Effect of ethanol on the isomerization of n-heptane over Pt/SAPO-11 and Pt/ZSM-22 catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(2): 207-211.
|
5 |
LEE Eunok, YUN Soyoung, PARK Young-Kwon, et al. Selective hydroisomerization of n-dodecane over platinum supported on SAPO-11[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 775-780.
|
6 |
WANG Xiangyu, ZHANG Xiangwen, WANG Qingfa. N-dodecane hydroisomerization over Pt/ZSM-22: Controllable microporous Brϕnsted acidity distribution and shape-selectivity[J]. Applied Catalysis A: General, 2020, 590: 117335.
|
7 |
Guang LYU, WANG Congxin, WANG Ping, et al. Pt/ZSM-22 with partially filled micropore channels as excellent shape-selective hydroisomerization catalyst[J]. ChemCatChem, 2019, 11(5): 1431-1436.
|
8 |
JAMIL Anas Karrar, MURAZA Oki. Facile control of nanosized ZSM-22 crystals using dynamic crystallization technique[J]. Microporous and Mesoporous Materials, 2016, 227: 16-22.
|
9 |
ZHANG Lei, FU Wenqian, HE Liwen, et al. Design and synthesis of Pt catalyst supported on ZSM-22 nanocrystals with increased accessible 10-MR pore mouths and acidic sites for long-chain n-alkane hydroisomerization[J]. Microporous and Mesoporous Materials, 2021, 313: 110834.
|
10 |
OKAMOTO Masaki, NISHIMURA Yohei, TAKAHASHI Miyuki, et al. Synthesis of short, needle-shaped crystals of TON-type zeolite by addition of inhibitors of crystal growth along the [001] direction[J]. Crystal Growth & Design, 2018, 18(11): 6573-6580.
|
11 |
ZHAI Miao, WU Wenxue, XING Enhui, et al. Generating TON zeolites with reduced [001] length through combined mechanochemical bead-milling and porogen-directed recrystallization with enhanced catalytic property in hydroisomerization[J]. Chemical Engineering Journal, 2022, 440: 135874.
|
12 |
高晓霞. 纳米梯度孔ZSM-5和Zn/ZSM-5分子筛催化剂的制备及其在甲醇制汽油中催化性能的研究[D]. 太原: 太原理工大学, 2013.
|
|
GAO Xiaoxia. Preparation of ZSM-5 and Zn/ZSM-5 zeolite catalysts with nanometer gradient pores and their catalytic performance in methanol to gasoline[D]. Taiyuan: Taiyuan University of Technology, 2013.
|
13 |
吴卓. ZSM-22分子筛的合成及其催化性能的研究[D]. 大连: 大连理工大学, 2009.
|
|
WU Zhuo. Synthesis and catalytic performance of ZSM-22 molecular sieve[D]. Dalian: Dalian University of Technology, 2009.
|
14 |
NIU Pengyu, XI Hongjuan, REN Jun, et al. Micropore blocked core-shell ZSM-22 designed via epitaxial growth with enhanced shape selectivity and high n-dodecane hydroisomerization performance[J]. Catalysis Science & Technology, 2018, 8(24): 6407-6419.
|
15 |
LIU Suyao, REN Jie, ZHU Shujin, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. Journal of Catalysis, 2015, 330: 485-496.
|
16 |
HE Liwen, FU Wenqian, LI Leyi, et al. Study of CA-treated ZSM-22 zeolite with enhanced catalytic performance in the hydroisomerization of long-chain n-dodecane[J]. New Journal of Chemistry, 2021, 45(5): 2820-2829.
|
17 |
WANG Yan, LIU Wei, ZHANG Wei, et al. Comparison of n-dodecane hydroisomerization performance over Pt supported ZSM-48 and ZSM-22[J]. Catalysis Letters, 2021, 151(12): 3492-3500.
|
18 |
史梦园. B-ZSM-22的合成和催化性能的研究[D]. 大连: 大连理工大学, 2014.
|
|
SHI Mengyuan. Study on synthesis and catalytic performance of B-ZSM-22[D]. Dalian: Dalian University of Technology, 2014.
|
19 |
JAMIL Anas K, MURAZA Oki, AL-AMER Adnan M. Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths[J]. Particuology, 2016, 24: 138-141.
|
20 |
WANG Xiangyu, ZHANG Xiangwen, WANG Qingfa. n-dodecane hydroisomerization over hierarchical ZSM-22 prepared by a dual-protected alkali treatment[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8495-8505.
|
21 |
LUO Yi, WANG Zhendong, JIN Shaoqing, et al. Synthesis and crystal growth mechanism of ZSM-22 zeolite nanosheets[J]. CrystEngComm, 2016, 18(30): 5611-5615.
|
22 |
NIU Pengyu, LIU Ping, XI Hongjuan, et al. Design and synthesis of Pt/ZSM-22 catalysts for selective formation of iso-Dodecane with branched chain at more central positions from n-dodecane hydroisomerization[J]. Applied Catalysis A: General, 2018, 562: 310-320.
|
23 |
NIEMINEN Ville, KUMAR Narendra, Teemu HEIKKILÄ, et al. Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources[J]. Applied Catalysis A: General, 2004, 259(2): 227-234.
|
24 |
赵思梦, 林明桂, 郗宏娟, 等. 以SBA-15为硅源合成多级孔SAPO-11分子筛及其在正十二烷临氢异构化中的应用[J]. 燃料化学学报, 2018, 46(6): 700-709
|
|
ZHAO Simeng, LIN Minggui, XI Hongjuan, et al. Hierarchical SAPO-11 prepared using SBA-15 as the silicon source and its application in n-dodecane hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 700-709
|
25 |
Yoshio ONO. A survey of the mechanism in catalytic isomerization of alkanes[J]. Catalysis Today, 2003, 81(1): 3-16.
|
26 |
LIU Suyao, REN Jie, ZHANG Huaike, et al. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. Journal of Catalysis, 2016, 335: 11-23.
|
27 |
TAO Shuo, LI Xiaolei, Guang LYU, et al. Highly mesoporous SAPO-11 molecular sieves with tunable acidity: Facile synthesis, formation mechanism and catalytic performance in hydroisomerization of n-dodecane[J]. Catalysis Science & Technology, 2017, 7(23): 5775-5784.
|
28 |
CLAUDE Marion C, MARTENS Johan A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48.
|