Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (11): 6068-6079.DOI: 10.16085/j.issn.1000-6613.2022-0139
• Resources and environmental engineering • Previous Articles Next Articles
Received:
2022-01-20
Revised:
2022-04-17
Online:
2022-11-28
Published:
2022-11-25
作者简介:
齐亚兵(1983—),男,博士,讲师,研究方向为传质与分离技术、水处理技术。E-mail:qiyabing123@163.com, yabingqi@xauat.edu.cn。
基金资助:
CLC Number:
QI Yabing. Research progress on degradation of phenolic pollutants by activated persulfate oxidation[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6068-6079.
齐亚兵. 活化过硫酸盐氧化法降解酚类污染物的研究进展[J]. 化工进展, 2022, 41(11): 6068-6079.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0139
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
对氯间二甲酚(PCMX) | 热 | T=30~60℃, CPDS=75mmol/L,pH0=6.86,CPCMX=1.5mmol/L | Ea(PCMX)=130kJ/mol,kPCMX=0.00029~0.02886min-1。降解率随温度和起始过硫酸盐浓度的增大而增大,pH不影响降解率。降解路径:电子转移、脱氯、芳香环氧化、侧链氧化、芳香环断裂 | SO4-·和·OH同时存在,中性pH下SO4-·为主要自由基 | [ |
壬基酚(NP)和三氯苯氧 氯酚(TCS) | 热 | T=25~65℃,pH0=8,CPS=2.5mmol/L,CNP=CTCS=5.0μmol/L | Ea(NP)=102.7kJ/mol,kNP=0.0042~0.6158min-1;Ea(TCS)=118.6kJ/mol,kTCS=0.0018~0.4623min-1。降解率随温度和起始过硫酸盐浓度的增大而增大,随pH的增大而降低。TCS促进NP的降解,NP阻碍TCS的降解。HCO3-、HA促进NP的降解,Cl-、NO3-、HCO3-、HA抑制TCS的降解。降解路径:羟基化、醚键断裂、硫酸根加成、偶联反应 | SO4-·和·OH同时存在,·OH的作用更大 | [ |
BPA | 热 | T=40~70℃ | Ea(BPA)=(184±12)kJ/mol。升高温度可显著增大BPA和TOC的去除率。酸性和中性pH比碱性pH更利于BPA的降解 | SO4-·和·OH同时存在 | [ |
苯酚 | 热、热+纳米 Fe3O4、热+铁矿石 | T=30~70℃,C苯酚=250mg/L | Ea(苯酚)=18.374kJ/mol。升高温度和增大过硫酸盐浓度有利于苯酚的降解。热+过硫酸盐降解体系中引入纳米Fe3O4、铁矿石可显著提高苯酚的降解率 | SO4-·和·OH同时存在,酸性pH下SO4-·为主要自由基,碱性pH下·OH为主要自由基 | [ |
MOP | 热+改性斜发沸石 | T=80℃,CMOP=200mg/L,CPS=1.2g/L,C沸石=1g/L | DR=95%。相对于热活化PS体系,热+沸石活化PS体系对MOP的降解率有了显著提高,是因为此体系中SO4-·和O2-·的生成速率有了显著增强 | SO4-·、·OH和O2-·均存在 | [ |
PNP | 微波 | P=300W,CPNP=20mg/L,CPS∶CPNP=15∶1,pH0=3~11,T=60~90℃, | DRmax=96.8%,Ea(PNP,传统加热)=143.4kJ/mol,Ea(PNP,微波加热)=136.3kJ/mol。起始pH、无机离子和HA对PNP降解的影响均很小 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
BPA | 微波 | CPMS=10mmol/L,CBPA=87.6μmol/L,T=80℃,t=45min | DR=100%,kBPA=0.0837min-1。BPA的降解率随温度的升高、微波功率的增大、起始pH的增大、PMS浓度的增大和起始BPA浓度的减小而增大。降解路径:β-断裂、羟基化、脱水、氧化骨架重排、开环 | SO4-·和·OH同时存在 | [ |
DDNP | 微波 | 在相同的条件下,微波+PDS对废水COD的去除率大于微波+H2O2对废水COD的去除率 | SO4-·和·OH同时存在 | [ | |
2,4-DCP | 微波+纳米Cu0 | C2,4-DCP=50mg/L,P=600W,CPDS=0.4g/L,CCu0=40mg/L,pH0=9,t=90min | DR=98%。pH=3~9时,2,4-DCP的降解率随pH的增大而增大,pH>9时,2,4-DCP的降解率随pH的增大而减小。2,4-DCP的降解率随Cu0加入量、微波功率的增大而增大,随2,4-DCP浓度的减小而增大,随PDS浓度的增大先增大后减小。降解路径:脱氯、羟基化、脱氢、开环 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
对氯间二甲酚(PCMX) | 热 | T=30~60℃, CPDS=75mmol/L,pH0=6.86,CPCMX=1.5mmol/L | Ea(PCMX)=130kJ/mol,kPCMX=0.00029~0.02886min-1。降解率随温度和起始过硫酸盐浓度的增大而增大,pH不影响降解率。降解路径:电子转移、脱氯、芳香环氧化、侧链氧化、芳香环断裂 | SO4-·和·OH同时存在,中性pH下SO4-·为主要自由基 | [ |
壬基酚(NP)和三氯苯氧 氯酚(TCS) | 热 | T=25~65℃,pH0=8,CPS=2.5mmol/L,CNP=CTCS=5.0μmol/L | Ea(NP)=102.7kJ/mol,kNP=0.0042~0.6158min-1;Ea(TCS)=118.6kJ/mol,kTCS=0.0018~0.4623min-1。降解率随温度和起始过硫酸盐浓度的增大而增大,随pH的增大而降低。TCS促进NP的降解,NP阻碍TCS的降解。HCO3-、HA促进NP的降解,Cl-、NO3-、HCO3-、HA抑制TCS的降解。降解路径:羟基化、醚键断裂、硫酸根加成、偶联反应 | SO4-·和·OH同时存在,·OH的作用更大 | [ |
BPA | 热 | T=40~70℃ | Ea(BPA)=(184±12)kJ/mol。升高温度可显著增大BPA和TOC的去除率。酸性和中性pH比碱性pH更利于BPA的降解 | SO4-·和·OH同时存在 | [ |
苯酚 | 热、热+纳米 Fe3O4、热+铁矿石 | T=30~70℃,C苯酚=250mg/L | Ea(苯酚)=18.374kJ/mol。升高温度和增大过硫酸盐浓度有利于苯酚的降解。热+过硫酸盐降解体系中引入纳米Fe3O4、铁矿石可显著提高苯酚的降解率 | SO4-·和·OH同时存在,酸性pH下SO4-·为主要自由基,碱性pH下·OH为主要自由基 | [ |
MOP | 热+改性斜发沸石 | T=80℃,CMOP=200mg/L,CPS=1.2g/L,C沸石=1g/L | DR=95%。相对于热活化PS体系,热+沸石活化PS体系对MOP的降解率有了显著提高,是因为此体系中SO4-·和O2-·的生成速率有了显著增强 | SO4-·、·OH和O2-·均存在 | [ |
PNP | 微波 | P=300W,CPNP=20mg/L,CPS∶CPNP=15∶1,pH0=3~11,T=60~90℃, | DRmax=96.8%,Ea(PNP,传统加热)=143.4kJ/mol,Ea(PNP,微波加热)=136.3kJ/mol。起始pH、无机离子和HA对PNP降解的影响均很小 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
BPA | 微波 | CPMS=10mmol/L,CBPA=87.6μmol/L,T=80℃,t=45min | DR=100%,kBPA=0.0837min-1。BPA的降解率随温度的升高、微波功率的增大、起始pH的增大、PMS浓度的增大和起始BPA浓度的减小而增大。降解路径:β-断裂、羟基化、脱水、氧化骨架重排、开环 | SO4-·和·OH同时存在 | [ |
DDNP | 微波 | 在相同的条件下,微波+PDS对废水COD的去除率大于微波+H2O2对废水COD的去除率 | SO4-·和·OH同时存在 | [ | |
2,4-DCP | 微波+纳米Cu0 | C2,4-DCP=50mg/L,P=600W,CPDS=0.4g/L,CCu0=40mg/L,pH0=9,t=90min | DR=98%。pH=3~9时,2,4-DCP的降解率随pH的增大而增大,pH>9时,2,4-DCP的降解率随pH的增大而减小。2,4-DCP的降解率随Cu0加入量、微波功率的增大而增大,随2,4-DCP浓度的减小而增大,随PDS浓度的增大先增大后减小。降解路径:脱氯、羟基化、脱氢、开环 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | UV | CPDS=84mmol/L,pH0=3~11, C苯酚=0.5mmol/L,t=30min | DR=100%,k苯酚=0.14~0.16min-1,碱性pH下TOC的去除率更高 | SO4-·和·OH同时存在 | [ |
TSL | UV | 降解过程符合拟一级动力学模型,对TSL的降解率排序为UV+PDS>UV+H2O2>UV+PMS。Cl-、SO42-、NO3-、磷酸盐缓冲液浓度对TSL的降解影响有限 | SO4-·和·OH同时存在 | [ | |
BPA | VUV+UV | CBPA=30mg/L,CPDS=1.25mmol/L, pH0=9,t=2min | DRmax=92.2%。Cl-促进BPA的降解,HCO3-和天然有机质抑制BPA的降解。 降解路径:SO4-·诱导的羟基化、·OH加成、C—C的β-断裂 | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
4-CP | UV+纳米MnO2 | C4-CP=25mg/L,CPMS=1mmol/L,C | DR=100%。4-CP的降解率随PMS和MnO2浓度的增大而增大,随pH的增大而减小。HCO3-和HPO42-抑制4-CP的降解,Cl-对4-CP的降解无影响 | SO4-·和·OH同时存在, ·OH为主要自由基 | [ |
BPS | UV+Cu-TiO2和Zn-TiO2 | CBPS=0.1mmol/L,CPS=5mmol/L,C | DR=100%。由Zn-TiO2产生的O2-·是Cu-TiO2表面Cu(Ⅱ)还原为Cu(Ⅰ)的媒介,从而使BPS的降解反应加速。降解路径:S—C键断裂、电子转移和羟基化 | SO4-·、·OH、O2-·和lO2均存在 | [ |
苯酚 | UVA+磁铁矿 | C苯酚=0.1mmol/L,C磁铁矿=0.2g/L,CPDS=0.5mmol/L,pH0=5 | 磁铁矿的粒度越小、Fe(Ⅱ)/Fe(Ⅲ)的比值越大,其对苯酚的降解效果越好。UVA+磁铁矿+PDS体系对苯酚的降解效果优于UVA+磁铁矿+H2O2体系 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
苯酚 | Vis+g-C3N4+Fe(Ⅲ) | Vis+g-C3N4+Fe(Ⅲ)+PDS对苯酚的去除率和降解速率分别比Vis+g-C3N4降解苯酚体系高16.5倍和240倍 | SO4-·和H2O2 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | UV | CPDS=84mmol/L,pH0=3~11, C苯酚=0.5mmol/L,t=30min | DR=100%,k苯酚=0.14~0.16min-1,碱性pH下TOC的去除率更高 | SO4-·和·OH同时存在 | [ |
TSL | UV | 降解过程符合拟一级动力学模型,对TSL的降解率排序为UV+PDS>UV+H2O2>UV+PMS。Cl-、SO42-、NO3-、磷酸盐缓冲液浓度对TSL的降解影响有限 | SO4-·和·OH同时存在 | [ | |
BPA | VUV+UV | CBPA=30mg/L,CPDS=1.25mmol/L, pH0=9,t=2min | DRmax=92.2%。Cl-促进BPA的降解,HCO3-和天然有机质抑制BPA的降解。 降解路径:SO4-·诱导的羟基化、·OH加成、C—C的β-断裂 | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
4-CP | UV+纳米MnO2 | C4-CP=25mg/L,CPMS=1mmol/L,C | DR=100%。4-CP的降解率随PMS和MnO2浓度的增大而增大,随pH的增大而减小。HCO3-和HPO42-抑制4-CP的降解,Cl-对4-CP的降解无影响 | SO4-·和·OH同时存在, ·OH为主要自由基 | [ |
BPS | UV+Cu-TiO2和Zn-TiO2 | CBPS=0.1mmol/L,CPS=5mmol/L,C | DR=100%。由Zn-TiO2产生的O2-·是Cu-TiO2表面Cu(Ⅱ)还原为Cu(Ⅰ)的媒介,从而使BPS的降解反应加速。降解路径:S—C键断裂、电子转移和羟基化 | SO4-·、·OH、O2-·和lO2均存在 | [ |
苯酚 | UVA+磁铁矿 | C苯酚=0.1mmol/L,C磁铁矿=0.2g/L,CPDS=0.5mmol/L,pH0=5 | 磁铁矿的粒度越小、Fe(Ⅱ)/Fe(Ⅲ)的比值越大,其对苯酚的降解效果越好。UVA+磁铁矿+PDS体系对苯酚的降解效果优于UVA+磁铁矿+H2O2体系 | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
苯酚 | Vis+g-C3N4+Fe(Ⅲ) | Vis+g-C3N4+Fe(Ⅲ)+PDS对苯酚的去除率和降解速率分别比Vis+g-C3N4降解苯酚体系高16.5倍和240倍 | SO4-·和H2O2 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
BPA | 超声 | PD=20W/L,CBPA=450μg/L,CPDS=10mg/L,T=30℃, pH0=6,t=180min | DR=100%。BPA的降解率随超声功率和过硫酸盐浓度的增大、BPA浓度的减小而增大。pH为6时BPA的降解率最高。温度对BPA的降解具有促进和抑制双重影响。Cl-、碳酸氢盐、硝酸盐和腐殖酸(HA)抑制BPA的降解。降解路径:羟基化、氧化、直接裂解 | SO4-·和·OH同时存在 | [ |
BPA | 超声 | CBPA=20mg/L,CPDS=4mg/L,pH0=9,t=60min | DR=93.45%。在偏碱性条件下BPA的降解率高于酸性和中性条件下的降解率,BPA的降解率随BPA初始浓度的增大而减小,随过硫酸盐的浓度的增大先增大后减小 | [ | |
NP | 超声+ nZVI-rGO | CPDS=6.5mmol/L,C催化剂=0.6g/L,P=300W,pH0=4.2,t=50min | DRmax=98.2%。催化剂经5次循环使用后对NP的降解率仅降低4.4% | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
BPA | 超声 | PD=20W/L,CBPA=450μg/L,CPDS=10mg/L,T=30℃, pH0=6,t=180min | DR=100%。BPA的降解率随超声功率和过硫酸盐浓度的增大、BPA浓度的减小而增大。pH为6时BPA的降解率最高。温度对BPA的降解具有促进和抑制双重影响。Cl-、碳酸氢盐、硝酸盐和腐殖酸(HA)抑制BPA的降解。降解路径:羟基化、氧化、直接裂解 | SO4-·和·OH同时存在 | [ |
BPA | 超声 | CBPA=20mg/L,CPDS=4mg/L,pH0=9,t=60min | DR=93.45%。在偏碱性条件下BPA的降解率高于酸性和中性条件下的降解率,BPA的降解率随BPA初始浓度的增大而减小,随过硫酸盐的浓度的增大先增大后减小 | [ | |
NP | 超声+ nZVI-rGO | CPDS=6.5mmol/L,C催化剂=0.6g/L,P=300W,pH0=4.2,t=50min | DRmax=98.2%。催化剂经5次循环使用后对NP的降解率仅降低4.4% | SO4-·和·OH同时存在,SO4-·为主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 阴阳极均为 铁电极 | C苯酚=100mg/L,CPDS=0.4mmol/L,pH0=3,CD=0.17mA/cm2,t=45min | DR=93.99%。苯酚的降解率随pH的增大而减小,随电流密度的增大先增大后减小,电流密度为0.17mA/cm2时苯酚的降解率最高,PDS浓度为0.4时苯酚的降解率最高 | [ | |
苯酚 | 阴阳极均为石墨烯电极 | C苯酚=25mg/L,nPDS∶n苯酚=50∶1,pH0=11,CD=30mA/cm2,t=90min | DR=98.91%。降解路径:苯酚先被氧化为对苯二酚,再被氧化为对苯醌,进一步被氧化为顺丁烯二酸酐,接着被氧化为反丁烯二酸,然后被氧化为乙二酸,最终生成CO2和H2O | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
四溴双酚A(TBBP-A) | 碳毡和钛网分别为阴阳极 | CTOC=882.9mg/L,E=3V,CPDS=2%~5%,pH0=2,t=1h | DRTOC>40%。酸性pH有利于TBBP-A的降解。在pH为2时,PS浓度对TOC降解率的影响不大,在中性和碱性情况下PDS浓度是影响TOC降解率的主要因素。提高外加电压有利于TOC的降解,处理时间易控制在1h以内。电极介质对TOC降解率影响不大 | [ | |
双酚A(BPA) | IrO2板为阳极、碳毡为阴极(阴极再生Fe2+) | CBPA=0.14mmol/L,CPS=5mmol/L,pH0=3,CFe=0.2mmol/L,t=60min | DR=98.4%,DRTOC=61.8% | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
双酚A(BPA) | BDD和DSA为阳极、不锈钢为阴极 | 在BDD/PS和BDD体系中,在不同介质环境中BPA的降解率排序为Cl->ClO4->SO42-。在DSA/PS和DS体系中,在不同介质环境中BPA的降解率排序为Cl->SO42->ClO4-。直接电解产生及Cl-与SO4-·/·OH反应产生的活性氯增强了对BPA的降解。降解路径:羟基化、羧化、氯取代 | SO4-·、·OH、活性氯均存在,在高氯酸盐介质中SO4-·是主要自由基,在氯化物介质中活性氯为主要氧化物种 | [ | |
苯酚 | RuO2/Ti 为阳极为阳极、CuFe2O4/ACF为阴极为阴极 | C苯酚=500mg/L,CPDS=1mmol/L, CD=50A/m2,pH0=7,t=60min | DR=97%。苯酚的降解率随PDS浓度、电流密度和pH的增大先增大后减小 | SO4-·和·OH同时存在 | [ |
苯酚、 4-溴酚、4-氯酚 | 阴极为两片并联的铂片、阳极为一铂片(Fe3+) | C苯酚=C4-溴酚=C4-氯酚=1mmol/L,CPDS=10mmol/L,CFe3+=2mmol/L, pH=2,CD=0.5mA/cm2 | DR苯酚=100%(120min),DR4-溴酚=100%(90min),DR4-氯酚=100%(90min) | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 阴阳极均为 铁电极 | C苯酚=100mg/L,CPDS=0.4mmol/L,pH0=3,CD=0.17mA/cm2,t=45min | DR=93.99%。苯酚的降解率随pH的增大而减小,随电流密度的增大先增大后减小,电流密度为0.17mA/cm2时苯酚的降解率最高,PDS浓度为0.4时苯酚的降解率最高 | [ | |
苯酚 | 阴阳极均为石墨烯电极 | C苯酚=25mg/L,nPDS∶n苯酚=50∶1,pH0=11,CD=30mA/cm2,t=90min | DR=98.91%。降解路径:苯酚先被氧化为对苯二酚,再被氧化为对苯醌,进一步被氧化为顺丁烯二酸酐,接着被氧化为反丁烯二酸,然后被氧化为乙二酸,最终生成CO2和H2O | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
四溴双酚A(TBBP-A) | 碳毡和钛网分别为阴阳极 | CTOC=882.9mg/L,E=3V,CPDS=2%~5%,pH0=2,t=1h | DRTOC>40%。酸性pH有利于TBBP-A的降解。在pH为2时,PS浓度对TOC降解率的影响不大,在中性和碱性情况下PDS浓度是影响TOC降解率的主要因素。提高外加电压有利于TOC的降解,处理时间易控制在1h以内。电极介质对TOC降解率影响不大 | [ | |
双酚A(BPA) | IrO2板为阳极、碳毡为阴极(阴极再生Fe2+) | CBPA=0.14mmol/L,CPS=5mmol/L,pH0=3,CFe=0.2mmol/L,t=60min | DR=98.4%,DRTOC=61.8% | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
双酚A(BPA) | BDD和DSA为阳极、不锈钢为阴极 | 在BDD/PS和BDD体系中,在不同介质环境中BPA的降解率排序为Cl->ClO4->SO42-。在DSA/PS和DS体系中,在不同介质环境中BPA的降解率排序为Cl->SO42->ClO4-。直接电解产生及Cl-与SO4-·/·OH反应产生的活性氯增强了对BPA的降解。降解路径:羟基化、羧化、氯取代 | SO4-·、·OH、活性氯均存在,在高氯酸盐介质中SO4-·是主要自由基,在氯化物介质中活性氯为主要氧化物种 | [ | |
苯酚 | RuO2/Ti 为阳极为阳极、CuFe2O4/ACF为阴极为阴极 | C苯酚=500mg/L,CPDS=1mmol/L, CD=50A/m2,pH0=7,t=60min | DR=97%。苯酚的降解率随PDS浓度、电流密度和pH的增大先增大后减小 | SO4-·和·OH同时存在 | [ |
苯酚、 4-溴酚、4-氯酚 | 阴极为两片并联的铂片、阳极为一铂片(Fe3+) | C苯酚=C4-溴酚=C4-氯酚=1mmol/L,CPDS=10mmol/L,CFe3+=2mmol/L, pH=2,CD=0.5mA/cm2 | DR苯酚=100%(120min),DR4-溴酚=100%(90min),DR4-氯酚=100%(90min) | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 气液两相滑动弧放电等离子体 | C苯酚=250~350mg/L,E≥14V,mPDS∶m苯酚=5.2~6.4,qg=10L/min | DR>90%。与未加过硫酸钠相比,加入过硫酸钠的气液两相滑动弧放电等离子体对苯酚的降解率提高了3.4%~12.2% | SO4-·和·OH同时存在 | [ |
对硝基苯酚(PNP) | 介质阻挡放电等离子体+Fe2+ | PDS和Fe2+的加入显著增强了等离子体对PNP的降解效果 | SO4-·和·OH同时存在, ·OH是主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 气液两相滑动弧放电等离子体 | C苯酚=250~350mg/L,E≥14V,mPDS∶m苯酚=5.2~6.4,qg=10L/min | DR>90%。与未加过硫酸钠相比,加入过硫酸钠的气液两相滑动弧放电等离子体对苯酚的降解率提高了3.4%~12.2% | SO4-·和·OH同时存在 | [ |
对硝基苯酚(PNP) | 介质阻挡放电等离子体+Fe2+ | PDS和Fe2+的加入显著增强了等离子体对PNP的降解效果 | SO4-·和·OH同时存在, ·OH是主要自由基 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
PNP | Cu0@Fe3O4 | CPNP=5mg/L,CPMS=0.5mmol/L,C催化剂=200mg/L,pH0=5,t=60min | DR=96%,H2PO42-和SO42-对PNP降解有抑制作用,HCO3-和Cl-对PNP降解有促进作用。Fe和Cu之间存在协同作用,Cu(Ⅰ)可促进Fe(Ⅲ)还原为Fe(Ⅱ),形成良好的氧化还原循环,提高了反应体系的持久性 | SO4-·和·OH同时存在,·OH是主要自由基 | [ |
苯酚 | 改性海绵铁 | C苯酚=250mg/L,C催化剂=0.4g/L,pH0=2,n催化剂∶nPDS=1∶15 | DR=95% | SO4-·和·OH同时存在 | [ |
苯酚 | CoCuFe-LDH | C苯酚=50mg/L,C催化剂=0.2g/L,CPMS=2.5mmol/L,pH0=7,t=60min | DR=96%,pH=2.8~11.3催化体系对苯酚均具有较高的降解率 | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
苯酚 | Co3O4-Al2O3@SiO2 | C苯酚=10mg/L,CPMS=0.7g/L,C催化剂=0.2g/L,pH0=7,t=30min | DR>98%,DRTOC=62.23%(1h)。催化剂重复使用4次后对苯酚的去除率仍然可达83.28% | [ | |
BPA | 富氧空位CoFe2O4-x | 氧空位可以促进电子传递,并且参与从Co3+/Fe3+到Co2+/Fe2+的氧化还原循环 | lO2、O2-·、·OH和SO4-·均存在,SO4-·是主要自由基 | [ | |
苯酚 | FeCo2O4 | 中性和碱性pH | PMS-FeCo2O4体系比PDS-FeCo2O4体系具有更快的氧化速率,消耗更多的氧化剂,残留的TOC浓度更高 | lO2、·OH和SO4-·(PMS-FeCo2O4体系),自由基和非自由基反应(PDS-FeCo2O4体系) | [ |
苯酚 | γ-MnOOH | C苯酚=100mg/L,C催化剂=1g/L,CPDS=2g/L, pH0=3~11,t=350min | DR>80%。与中性和酸性pH相比,碱性pH时苯酚的降解率更高,苯酚的降解率随PDS浓度和催化剂浓度的增大而增大 | SO4-·、·OH、γ-MnOOH、S2O82-与γ-MnOOH形成的氧化物中间体 | [ |
DCP | nZVI | CDCP=30mg/L,CnZVI=2g/L,CPDS=12.5mmol/L,pH0=3,t=180min | DR=92.5%,Ea=91.5kJ/mol。DCP的降解率随nZVI和PDS浓度的增大而增大,随pH和DCP浓度的增大而减小 | SO4-·和·OH同时存在 | [ |
BPA | 纳米Cu2FeSnS4(CFTS) | 与单金属Cu/Fe/Sn硫化物活化PDS降解BPA体系相比,CFTS活化PDS对BPA的降解率有了显著增强。Cu、Fe、Sn之间的固有电子传递克服了对M(n+1)+/M n+氧化还原循环的抑制 | SO4-·和·OH同时存在 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
PNP | Cu0@Fe3O4 | CPNP=5mg/L,CPMS=0.5mmol/L,C催化剂=200mg/L,pH0=5,t=60min | DR=96%,H2PO42-和SO42-对PNP降解有抑制作用,HCO3-和Cl-对PNP降解有促进作用。Fe和Cu之间存在协同作用,Cu(Ⅰ)可促进Fe(Ⅲ)还原为Fe(Ⅱ),形成良好的氧化还原循环,提高了反应体系的持久性 | SO4-·和·OH同时存在,·OH是主要自由基 | [ |
苯酚 | 改性海绵铁 | C苯酚=250mg/L,C催化剂=0.4g/L,pH0=2,n催化剂∶nPDS=1∶15 | DR=95% | SO4-·和·OH同时存在 | [ |
苯酚 | CoCuFe-LDH | C苯酚=50mg/L,C催化剂=0.2g/L,CPMS=2.5mmol/L,pH0=7,t=60min | DR=96%,pH=2.8~11.3催化体系对苯酚均具有较高的降解率 | SO4-·和·OH同时存在,SO4-·是主要自由基 | [ |
苯酚 | Co3O4-Al2O3@SiO2 | C苯酚=10mg/L,CPMS=0.7g/L,C催化剂=0.2g/L,pH0=7,t=30min | DR>98%,DRTOC=62.23%(1h)。催化剂重复使用4次后对苯酚的去除率仍然可达83.28% | [ | |
BPA | 富氧空位CoFe2O4-x | 氧空位可以促进电子传递,并且参与从Co3+/Fe3+到Co2+/Fe2+的氧化还原循环 | lO2、O2-·、·OH和SO4-·均存在,SO4-·是主要自由基 | [ | |
苯酚 | FeCo2O4 | 中性和碱性pH | PMS-FeCo2O4体系比PDS-FeCo2O4体系具有更快的氧化速率,消耗更多的氧化剂,残留的TOC浓度更高 | lO2、·OH和SO4-·(PMS-FeCo2O4体系),自由基和非自由基反应(PDS-FeCo2O4体系) | [ |
苯酚 | γ-MnOOH | C苯酚=100mg/L,C催化剂=1g/L,CPDS=2g/L, pH0=3~11,t=350min | DR>80%。与中性和酸性pH相比,碱性pH时苯酚的降解率更高,苯酚的降解率随PDS浓度和催化剂浓度的增大而增大 | SO4-·、·OH、γ-MnOOH、S2O82-与γ-MnOOH形成的氧化物中间体 | [ |
DCP | nZVI | CDCP=30mg/L,CnZVI=2g/L,CPDS=12.5mmol/L,pH0=3,t=180min | DR=92.5%,Ea=91.5kJ/mol。DCP的降解率随nZVI和PDS浓度的增大而增大,随pH和DCP浓度的增大而减小 | SO4-·和·OH同时存在 | [ |
BPA | 纳米Cu2FeSnS4(CFTS) | 与单金属Cu/Fe/Sn硫化物活化PDS降解BPA体系相比,CFTS活化PDS对BPA的降解率有了显著增强。Cu、Fe、Sn之间的固有电子传递克服了对M(n+1)+/M n+氧化还原循环的抑制 | SO4-·和·OH同时存在 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 甘蔗渣生物炭(Ca/BS-800-KOH) | C苯酚=20mg/L,C生物炭=0.066g/L,CPDS=1g/L,t=90min | DR=100%。自由基和非自由基均参与了苯酚的降解,非自由基占主导地位 | ·OH、SO4-·、O2-·和lO2 | [ |
PNP | 活性炭+热 | CPNP=10mg/L,C活性炭=1g/L,CPDS=2mmol/L,T=50℃, pH0=3.5,t=120min | DR=100%。活性炭表面的缺陷为活性位点,活性炭的加入提高了热活化降解PNP的反应速率,并未改变降解路径 | SO4-·和·OH同时存在,且SO4-·为主要自由基 | [ |
2,4-DCP | 鸡蛋壳生物炭 | C2,4-DCP=100mg/L,CPDS=1g/L,C生物炭=0.233g/L,t=120min | DR>90%。降解过程中存在自由基和非自由基两种反应路径,以·OH为主导的自由基反应路径主导着反应的进行 | ·OH、SO4-·、O2-·和lO2,·OH为主要自由基 | [ |
苯酚 | 生物炭+Fe2+ | BC+PDS+Fe2+体系对苯酚的降解率略高于BC+PDS体系对苯酚的降解率,BC在活化PDS过程中起主要作用。Cl-、NO3-、HCO3-、HPO42-和腐殖酸对苯酚的降解有明显的抑制作用 | lO2的作用最大,·OH次之,SO4-·的贡献最小 | [ | |
苯酚、2-氯苯酚、 2,4-二氯苯酚、 2,4,6-三氯苯酚 | 生物炭 | 950℃下在CO2气氛中活化制备的生物炭性能最好。HCO3-、HPO42-抑制酚类物质的降解。酚类污染物降解的中间产物主要为苯醌 | lO2、转移的电子 | [ | |
4-正辛基苯酚、 4-正壬基苯酚、 双酚A | N,S-rGO | C烷基酚=20μg/L,CPS=0.9mmol/L CN, S-rGO=50mg/L,pH0=6.64,t=30min | DR4-正辛基苯酚=DR4-正壬基苯酚=DR双酚A=100% | SO4-·和·OH同时存在 | [ |
BPA、 4-CP | 磁性生物炭(γ-Fe2O3@BC、Co-BC) | CBPA=20mg/L,C4-CP=50mg/L | DRBPA=100%(20min),DR4-CP=100%(10min) | ·OH、SO4-·、O2-·和lO2 | [ |
酚类物质 | 活化方式 | 反应条件 | 降解过程 | 氧化物质 | 参考文献 |
---|---|---|---|---|---|
苯酚 | 甘蔗渣生物炭(Ca/BS-800-KOH) | C苯酚=20mg/L,C生物炭=0.066g/L,CPDS=1g/L,t=90min | DR=100%。自由基和非自由基均参与了苯酚的降解,非自由基占主导地位 | ·OH、SO4-·、O2-·和lO2 | [ |
PNP | 活性炭+热 | CPNP=10mg/L,C活性炭=1g/L,CPDS=2mmol/L,T=50℃, pH0=3.5,t=120min | DR=100%。活性炭表面的缺陷为活性位点,活性炭的加入提高了热活化降解PNP的反应速率,并未改变降解路径 | SO4-·和·OH同时存在,且SO4-·为主要自由基 | [ |
2,4-DCP | 鸡蛋壳生物炭 | C2,4-DCP=100mg/L,CPDS=1g/L,C生物炭=0.233g/L,t=120min | DR>90%。降解过程中存在自由基和非自由基两种反应路径,以·OH为主导的自由基反应路径主导着反应的进行 | ·OH、SO4-·、O2-·和lO2,·OH为主要自由基 | [ |
苯酚 | 生物炭+Fe2+ | BC+PDS+Fe2+体系对苯酚的降解率略高于BC+PDS体系对苯酚的降解率,BC在活化PDS过程中起主要作用。Cl-、NO3-、HCO3-、HPO42-和腐殖酸对苯酚的降解有明显的抑制作用 | lO2的作用最大,·OH次之,SO4-·的贡献最小 | [ | |
苯酚、2-氯苯酚、 2,4-二氯苯酚、 2,4,6-三氯苯酚 | 生物炭 | 950℃下在CO2气氛中活化制备的生物炭性能最好。HCO3-、HPO42-抑制酚类物质的降解。酚类污染物降解的中间产物主要为苯醌 | lO2、转移的电子 | [ | |
4-正辛基苯酚、 4-正壬基苯酚、 双酚A | N,S-rGO | C烷基酚=20μg/L,CPS=0.9mmol/L CN, S-rGO=50mg/L,pH0=6.64,t=30min | DR4-正辛基苯酚=DR4-正壬基苯酚=DR双酚A=100% | SO4-·和·OH同时存在 | [ |
BPA、 4-CP | 磁性生物炭(γ-Fe2O3@BC、Co-BC) | CBPA=20mg/L,C4-CP=50mg/L | DRBPA=100%(20min),DR4-CP=100%(10min) | ·OH、SO4-·、O2-·和lO2 | [ |
1 | RAZA W, LEE J, RAZA N, et al. Removal of phenolic compounds from industrial waste water based on membrane-based technologies[J]. Journal of Industrial and Engineering Chemistry, 2019, 71 :1-18. |
2 | 齐亚兵, 罗橙, 张思敬. 含酚废水液膜脱酚技术研究进展[J]. 化工进展, 2021, 40(S2): 348-355. |
QI Yabing, LUO Cheng, ZHANG Sijing. Research progress on dephenolization technologies of wastewater containing phenolic compounds by liquid membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 348-355. | |
3 | YANG X Y, WANG B J, LUO H Q, et al. Efficient recovery of phenol from coal tar processing wastewater with tributylphosphane/diethyl carbonate/cyclohexane: extraction cycle and mechanism study[J]. Chemical Engineering Research and Design, 2020, 157: 104-113. |
4 | 齐亚兵, 杨清翠. 煤化工废水脱酚技术研究进展[J]. 应用化工, 2021, 50(5): 1414-1419. |
QI Yabing, YANG Qingcui. Research progress on removal of phenols from coal chemical wastewater[J]. Applied Chemical Industry, 2021, 50(5): 1414-1419. | |
5 | 国家环境保护总局. 中华人民共和国国家标准. 污水综合排放标准: [S]. 北京: 中国标准出版社, 1998. |
State Environmental Protection Administration of the People’s Republic of China. National Standard (Mandatory) of the People’s Republic of China. Integrated wastewater discharge standard: [S]. Beijing: Standards Press of China, 1998. | |
6 | 韩美玲, 张锦, 杨明君, 等.活化过硫酸盐处理酚类废水的研究进展[J]. 应用化工, 2019, 48(10): 2465-2469. |
HAN Meiling, ZHANG Jin, YANG Mingjun, et al. Research progress on persulfate activation for phenolic wastewater[J]. Applied Chemical Industry, 2019, 48(10): 2465-2469. | |
7 | SUN Y J, ZHAO J J, ZHANG B T, et al. Oxidative degradation of chloroxylenol in aqueous solution by thermally activated persulfate: kinetics, mechanisms and toxicities[J]. Chemical Engineering Journal, 2019, 368: 553-563. |
8 | QI Y M, WEI J Y, QU R J, et al. Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: reaction kinetics and formation of co-oligomerization products[J].Chemical Engineering Journal, 2021, 403: 126396. |
9 | OLMEZ-HANCI T, ARSLAN-ALATON I, GENC B. Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity[J]. Journal of Hazardous Materials, 2013, 263: 283-290. |
10 | 王思齐. 过硫酸盐高级氧化法处理含酚废水的实验研究[D]. 包头: 内蒙古科技大学, 2017. |
WANG Siqi. Study on phenol wastewater treatment by active persulfate oxidation method[D]. Baotou: Inner Mongolia University of Science & Technology, 2017. | |
11 | HUANG Z H, JI Z Y, ZHAO Y Y, et al. Efficient degradation of 2-methoxyphenol using heterogeneous-homogeneous synergistic activated persulfate with modified clinoptilolite + heat[J]. Chemical Engineering Journal, 2020, 400: 125863. |
12 | HU L M, ZHANG G S, WANG Q, et al. Effect of microwave heating on persulfate activation for rapid degradation and mineralization of p-nitrophenol[J]. ACS Sustainable Chemistry &Engineering, 2019, 7: 11662-11671.n |
13 | QI C D, LIU X, LIN C Y,et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 315: 201-209. |
14 | WANG Y, GUO S P, GU Z P, et al. Comparison study on microwave irradiation-activated persulfate and hydrogen peroxide systems in the treatment of dinitrodiazophenol industrial wastewater[J]. Chemosphere, 2020, 242 : 125139. |
15 | GHORBANIAN Z, ASGARI G, SAMADI M T, et al. Removal of 2,4- dichlorophenol using microwave assisted nanoscale zero-valent copper activated persulfate from aqueous solutions: mineralization, kinetics, and degradation pathways[J]. Journal of Molecular Liquids, 2019, 296: 111873. |
16 | LIN Y T, LIANG C J, CHEN J H. Feasibility study of ultraviolet activated persulfate oxidation of phenol[J]. Chemosphere, 2011, 82: 1168-1172. |
17 | KILIC M Y, ABDELRAHEEM W H, HE X X, et al. Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes(AOPs)[J]. Journal of Hazardous Materials,2019, 367: 734-742. |
18 | LIU Z H, LAN H, WANG Y, et al. Highly efficient degradation of bisphenol A with persulfate activated by vacuum-ultraviolet/ultraviolet light (VUV/UV): experiments and theoretical calculations[J]. Chemical Engineering Journal, 2022, 429: 132485. |
19 | ESLAMI A, HASHEMI M, GHANBARI F. Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment[J].Journal of Cleaner Production, 2018, 195: 1389-1397. |
20 | ZHANG Y L, CHU W. Bisphenol S degradation via persulfate activation under UV-LED using mixed catalysts: synergistic effect of Cu-TiO2 and Zn-TiO2 for catalysis[J]. Chemosphere, 2022, 286: 131797. |
21 | AVETTA P, PENSATO A, MINELLA M, et al. Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-fenton-like conditions[J]. Environmental Science & Technology, 2015, 49: 1043-1050. |
22 | HU J Y, TIAN K, JIANG H. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(Ⅲ)/persulfate system[J].Chemosphere, 2016, 148: 34-40. |
23 | DARSINOU B, FRONTISTIS Z, ANTONOPOULOU M, et al. Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature[J]. Chemical Engineering Journal, 2015, 280: 623-633. |
24 | 伍昌年, 凌琪, 唐玉朝, 等. 超声/过硫酸钾降解水中双酚A研究[J]. 应用化工, 2018, 47(10): 2132-2134, 2139. |
WU Changnian, LING Qi, TANG Yuchao, et al. Degradation of bisphenol A in aqueous solution by ultrasonic/persulfate[J]. Applied Chemical Industry, 2018, 47(10): 2132-2134, 2139. | |
25 | RAHMANI A R, SALARI M, SHABANLOO A, et al. Sono-catalytic activation of persulfate by nZVI-reduced graphene oxide for degradation of nonylphenol in aqueous solution: process optimization, synergistic effect and degradation pathway[J]. Journal of Environmental Chemical Engineering, 2020, 8: 104202. |
26 | RAHMANI A R, REZAEIVAHIDIAN H, ALMASI M, et al. A comparative study on the removal of phenol from aqueous solutions by electro-Fenton and electro-persulfate processes using iron electrodes[J]. Research on Chemical Intermediates, 2016, 42: 1441-1450. |
27 | 冯俊生, 张郓, 王晓红, 等. 石墨烯电极电活化过硫酸盐降解含酚废水研究[J]. 安全与环境学报, 2021, 21(1): 404-410. |
FENG Junsheng, ZHANG Yun, WANG Xiaohong, et al. Degrading phenolic sewage via the graphene electrodes through theelectrically activated persulfate[J]. Journal of Safety and Environment, 2021, 21(1): 404-410. | |
28 | 华涛, 王浩楠, 李凤祥. 电活化过硫酸钠降解四溴双酚A生产废水[J]. 环境污染与防治, 2020, 42(5): 539-542, 546. |
HUA Tao, WANG Haonan, LI Fengxiang. Degradation of TBBP-A wastewater by process of electro-activated sodium persulfate[J]. Environmental pollution & Control, 2020, 42(5): 539-542, 546. | |
29 | SANTOS A J D, SIRES I, BRILLAS E. Removal of bisphenol A from acidic sulfate medium and urban wastewater using persulfate activated with electroregenerated Fe2+ [J]. Chemosphere, 2021, 263: 128271. |
30 | DING J, BU L J, ZHAO Q L, et al. Electrochemical activation of persulfate on BDD and DSA anodes: electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A[J]. Journal of Hazardous Materials, 2020, 388: 121789. |
31 | TIAN S C, TU Y M, CHEN J J, et al. Persulfate enhanced electrochemical oxidation of phenol with CuFe2O4/ACF (activated carbon fibers) cathode[J]. Separation and Purification Technology, 2021, 279: 119727. |
32 | 赖辉辉. Cathode/PDS/Fe3+体系降解酚类有机物的研究[D]. 武汉: 华中科技大学, 2017. |
LAI Huihui. Degradation of phenolic organic compounds by cathode/PDS/Fe3+ system[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
33 | 杨昭. 过硫酸盐气液两相滑动弧放电等离子体处理有机废水的研究[D]. 西安: 西安理工大学, 2018. |
YANG Zhao. Study on the treatment of phenol wastewater by two phase gliding arc discharge plasma with sodium sulfate[D]. Xi’an: Xi’an University of Technology, 2018. | |
34 | SHANG K F, LI W F, WANG X J, et al. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process[J]. Separation and Purification Technology, 2019, 218: 106-112. |
35 | 石清清,蒲生彦,杨犀. 纳米Cu0@Fe3O4活化PMS 降解对-硝基苯酚的协同反应机制[J]. 环境科学, 2020, 41(10): 4615-4625. |
SHI Qingqing, PU Shengyan, YANG Xi. Synergistic reaction mechanism of Cu0@Fe3O4 activated PMS for degradation of p-nitrophenol[J]. Environmental Science, 2020, 41(10): 4615-4625. | |
36 | 程爱华,马万超,徐哲. 等离子体改性海绵铁活化过硫酸盐处理含酚废水[J]. 化工进展, 2020, 39(2): 798-804. |
CHENG Aihua, MA Wanchao, XU Zhe. Treatment of phenol wastewater with persulfate activated by plasma modified sponge iron[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 798-804. | |
37 | 杜仙格,杜娜娜,曹昉,等. 钴铜铁三元类水滑石材料催化过硫酸氢钾复合盐降解苯酚[J]. 环境污染与防治, 2020, 42(7): 843-848. |
DU Xiange, DU Nana, CAO Fang, et al. Degradation of phenol by peroxymonosulfate activated with cobalt-copper-iron ternary hydrotalcite-like compounds[J]. Environmental pollution & Control, 2020, 42(7): 843-848. | |
38 | 胡浩栋,王朝旭,李兴发,等. Co3O4-Al2O3@SiO2协同活化过硫酸氢钾降解苯酚的研究[J].应用化工, 2021, 50(3): 665-669, 974. |
HU Chaodong, WANG Chaoxu, LI Xingfa, et al. Study on degradation of phenol by Co3O4-Al2O3@SiO2 synergistic activated potassium persulfate[J]. Applied Chemical Industry, 2021, 50(3): 665-669, 974. | |
39 | WU L Y, ZHANG Q, JHONG G M, et al. Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4- x [J].Chemosphere, 2019, 221: 412-422. |
40 | WANG C, ZHAO J Y, CHEN C M, et al. Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions[J]. Applied Surface Science, 2021, 562: 150134. |
41 | LI Y, LIU L D, LIU L, et al. Effificient oxidation of phenol by persulfate using manganite as a catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2016, 411: 264-271. |
42 | LI R C, JIN X Y, MEGHARAJ M, et al. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system[J]. Chemical Engineering Journal, 2015, 264: 587-594. |
43 | KONG L S, FANG G D, CHEN Y F, et al. Efficient activation of persulfate decomposition by Cu2FeSnS4 nanomaterial for bisphenol A degradation: kinetics, performance and mechanism studies[J]. Applied Catalysis B: Environmental, 2019, 253: 278-285. |
44 | 肖鹏飞,安璐,韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. |
XIAO Pengfei, AN Lu, HAN Shuang. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306. | |
45 | 张浩. 甘蔗渣生物炭活化过硫酸盐降解环境有机污染物活化机理和活性位点研究[D]. 长沙: 湖南大学, 2020. |
ZHANG Hao. Study on activation mechanism and active sites of bagasse biochar activated persulfate to degrade environmental organic pollutants[D]. Changsha: Hunan University, 2020. | |
46 | 孙鹏,柳佳鹏,王维大,等. 活性炭强化热活化过硫酸盐降解对硝基苯酚[J].中国环境科学,2020, 40(11): 4779-4785. |
SUN Peng, LIU Jiapeng, WANG Weida, et al. Active carbon enhanced thermal activation of persulfate for degradation of p-nitrophenol[J]. China Environmental Science, 2020, 40(11): 4779-4785. | |
47 | 刘昊宇.鸡蛋壳生物炭制备及其活化过硫酸盐处理2,4-二氯苯酚的机理研究[J]. 长沙: 湖南大学, 2020. |
LIU Haoyu. Study on preparation of egg shell-biochar and mechanism of activated persulfate[D]. Changsha: Hunan University, 2020. | |
48 | MISERLI K, KOGOLA D, PARASCHOUDI I, et al. Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems[J]. Chemical Engineering Journal Advances, 2022, 9: 100201. |
49 | SUN C, CHEN T, HUANG Q X, et al. Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: performance and mechanism[J]. Chemical Engineering Journal, 2020, 380: 122519. |
50 | WANG Q, LI L, LUO L, et al. Activation of persulfate with dual-doped reduced graphene oxide for degradation of alkylphenols[J]. Chemical Engineering Journal, 2019, 376: 120891. |
51 | 荣幸. 磁性生物炭活化过硫酸盐降解水中有机污染物的研究[J]. 济南: 山东大学, 2019. |
RONG Xing. Activation of persulfate by magnetic biochar for organic contaminants degradation in water[D]. Jinan: Shandong University, 2019. | |
52 | KHOSHTINAT F, TABATABAIE T, RAMAVANDI B, et al. Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge[J]. Chemosphere, 2021, 283: 131265. |
53 | 杨峰. 羰基化纳米金刚石活化过硫酸盐降解对氯苯酚的研究[D].哈尔滨: 哈尔滨工业大学, 2017. |
YANG Feng. Activation of peroxymonosulfate by carbonylation nanodiamonds foe elimination of p-chlorophenol[D]. Harbin: Harbin Institute of Technology, 2017. | |
54 | 徐西蒙,宗绍燕,刘丹,等. 钢渣碱活化过硫酸盐降解双酚A[J].中国环境科学, 2019, 39(7): 2889-2895. |
XU Ximeng, ZONG Shaoyan, LIU Dan, et al. Bisphenol A degradation by base-activated persulfate using steel slag[J]. China Environmental Science, 2019, 39(7): 2889-2895. | |
55 | LIU L, XU X, LI Y W, et al. One-step synthesis of “nuclear-shell” structure iron-carbon nanocomposite as a persulfate activator for bisphenol A degradation[J]. Chemical Engineering Journal, 2020, 382: 122780. |
56 | LIU S Q, ZHANG Z C, HUANG F, et al. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: role of PMS adsorption and singlet oxygen generation[J]. Applied Catalysis B: Environmental, 2021, 286: 119921. |
57 | DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571: 643-657. |
58 | OYEKUNLE D T, CAI J Y, GENDY E A, et al. Impact of chloride ions on activated persulfates based advanced oxidation process (AOPs): a mini review[J]. Chemosphere, 2021, 280: 130949. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[10] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[11] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[14] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[15] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |