Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 3138-3145.DOI: 10.16085/j.issn.1000-6613.2021-1355
• Materials science and technology • Previous Articles Next Articles
MA Xu(), ZOU Minggui, CUI Weiwei, FU Anran, LIAO Xiaolong, GONG Guifen(
)
Received:
2021-06-28
Revised:
2021-07-20
Online:
2022-06-21
Published:
2022-06-10
Contact:
GONG Guifen
马续(), 邹明贵, 崔巍巍, 付安然, 廖小龙, 巩桂芬(
)
通讯作者:
巩桂芬
作者简介:
马续(2000—),女,硕士研究生,研究方向为锂离子电池材料。E-mail:基金资助:
CLC Number:
MA Xu, ZOU Minggui, CUI Weiwei, FU Anran, LIAO Xiaolong, GONG Guifen. Synthesis and performance of a kind of water soluble negative electrode binder[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3138-3145.
马续, 邹明贵, 崔巍巍, 付安然, 廖小龙, 巩桂芬. 一种水性负极黏结剂的合成及性能[J]. 化工进展, 2022, 41(6): 3138-3145.
条件 | EVOH | ES-Li-10 | ES-Li-20 | ES-Li-30 | ES-Li-40 | ES-Li-50 | ES-Li-60 |
---|---|---|---|---|---|---|---|
12h | - | + | + | +++ | +++ | +++ | +++ |
24h | - | + | ++ | +++ | +++ | +++ | +++ |
4℃ | - | + | + | ++ | ++ | ++ | ++ |
60℃ | - | ++ | +++ | +++ | +++ | +++ | +++ |
条件 | EVOH | ES-Li-10 | ES-Li-20 | ES-Li-30 | ES-Li-40 | ES-Li-50 | ES-Li-60 |
---|---|---|---|---|---|---|---|
12h | - | + | + | +++ | +++ | +++ | +++ |
24h | - | + | ++ | +++ | +++ | +++ | +++ |
4℃ | - | + | + | ++ | ++ | ++ | ++ |
60℃ | - | ++ | +++ | +++ | +++ | +++ | +++ |
条件 | EVOH | ES-Li-10 | ES-Li-20 | ES-Li-30 | ES-Li-40 | ES-Li-50 | ES-Li-60 |
---|---|---|---|---|---|---|---|
初始 | 40.285 | 85.554 | 134.000 | 92.011 | 78.744 | 77.810 | 67.579 |
第1天 | 40.285 | 86.412 | 134.385 | 92.879 | 79.645 | 78.465 | 68.459 |
第30天 | 40.286 | 86.546 | 134.402 | 93.001 | 79.747 | 78.805 | 68.556 |
第30天溶胀率/% | 0 | 0.12 | 0.30 | 1.08 | 1.27 | 1.37 | 1.45 |
条件 | EVOH | ES-Li-10 | ES-Li-20 | ES-Li-30 | ES-Li-40 | ES-Li-50 | ES-Li-60 |
---|---|---|---|---|---|---|---|
初始 | 40.285 | 85.554 | 134.000 | 92.011 | 78.744 | 77.810 | 67.579 |
第1天 | 40.285 | 86.412 | 134.385 | 92.879 | 79.645 | 78.465 | 68.459 |
第30天 | 40.286 | 86.546 | 134.402 | 93.001 | 79.747 | 78.805 | 68.556 |
第30天溶胀率/% | 0 | 0.12 | 0.30 | 1.08 | 1.27 | 1.37 | 1.45 |
1 | 王亚丽, 刘丙学, 田国峰, 等. 高性能锂离子电池正极黏合剂研究进展[J]. 高分子学报, 2020, 51(4): 326-337. |
WANG Yali, LIU Bingxue, TIAN Guofeng, et al. Research progress of cathode binder for high performance lithium-ion battery[J]. Acta Polymerica Sinica, 2020, 51(4): 326-337. | |
2 | 王策. 锂离子电池正极材料合成及改性[J]. 化工进展, 2021, 40(9): 4998-5011. |
WANG Ce. Synthesis and modification of cathode materials for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011. | |
3 | 巩桂芬, 邹明贵, 崔巍巍, 等. 锂离子电池隔膜材料EVOLi-OMMT的制备及其性能[J]. 复合材料学报, 2022, 39(3): 1169-1176. |
GONG Guifen, ZOU Minggui, CUI Weiwei, et al. Preparation and performance of EVOLi-OMMT separator material for lithium ion batteries[J].Acta Materiae Compositae Sinica, 2022, 39(3): 1169-1176. | |
4 | CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478. |
5 | HE X, LIU Z M, GAO G P, et al. Revealing the working mechanism of a multi-functional block copolymer binder for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 59: 1-8. |
6 | RAJEEV K K, NAM J, KIM E, et al. A self-healable polymer binder for Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica Acta, 2020, 364: 137311. |
7 | LIU H, CHEN T Q, XU Z X, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54842-54850. |
8 | 黄书. 水性离子聚合物黏结剂制备及其对电极性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
HUANG Shu. Preparation of waterborne ionomer binders and their effects on electrochemical performances of electrodes[D]. Harbin: Harbin Institute of Technology, 2019. | |
9 | 彭黎波, 叶诚曦, 童庆松, 等. 改性PVDF或替代PVDF黏结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180. |
PENG Libo, YE Chengxi, TONG Qingsong, et al. Research progress of replacing traditional PVDF binder with functional binder for lithium batteries[J]. Materials Review, 2021, 35(5): 5174-5180. | |
10 | HUANG W B, WANG W, WANG Y, et al. Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer[J]. Journal of Materials Chemistry A, 2021, 9(3): 1541-1551. |
11 | YU L M, LUO Z, GONG C R, et al. Water-based binder with easy reuse characteristics for silicon/graphite anodes in lithium-ion batteries[J]. Polymer Journal, 2021, 53(8): 923-935. |
12 | YANG Z H, WU Z J, JIANG D W, et al. Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate[J]. Journal of Materials Chemistry C, 2021, 9(8): 2752-2762. |
13 | 邵丹, 骆相宜, 梁俊超, 等. 水性黏结剂羧甲基纤维素钠对锂离子电池钛酸锂负极性能的影响[J]. 化工新型材料, 2020, 48(5): 155-158. |
SHAO Dan, LUO Xiangyi, LIANG Junchao, et al. Influence of CMC water-soluble binder on electrochemical performance of Li4Ti5O12 cathode-based Li-ion battery[J]. New Chemical Materials, 2020, 48(5): 155-158. | |
14 | GORDON R, ORIAS R, WILLENBACHER N. Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers[J]. Journal of Materials Science, 2020, 55(33): 15867-15881. |
15 | ZHANG Z A, ZENG T, LAI Y Q, et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 1-8. |
16 | CHEN F, LI H, CHEN T J, et al. Constructing crosslinked lithium polyacrylate/polyvinyl alcohol complex binder for high performance sulfur cathode in lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125870. |
17 | 谢功山, 王志成, 袁爱宁, 等. 锂离子电池用水性聚氨酯黏结剂的制备与性能[J]. 精细化工, 2019, 36(9): 1956-1961. |
XIE Gongshan, WANG Zhicheng, YUAN Aining, et al. Preparation and properties of waterborne polyurethane binders for lithium-ion battery[J]. Fine Chemicals, 2019, 36(9): 1956-1961. | |
18 | 邹树良, 马先果, 葛武杰, 等. 锂二次电池水性黏合剂研究进展[J]. 电源技术, 2019, 43(12): 2017-2021. |
ZOU Shuliang, MA Xianguo, GE Wujie, et al. Research progress of water-based binder for lithium secondary battery[J]. Chinese Journal of Power Sources, 2019, 43(12): 2017-2021. | |
19 | 宫璐, 谢媛媛, 刘成士. 聚丙烯酸黏结剂在锂离子电池中的应用[J]. 电池, 2014, 44(5): 307-309. |
GONG Lu, XIE Yuanyuan, LIU Chengshi. Application of polyacrylic acid as binder in Li-ion battery[J]. Battery Bimonthly, 2014, 44(5): 307-309. | |
20 | LIAO J B, LIU Z, WANG J L, et al. Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries[J]. ACS Omega, 2020, 5(14): 8272-8282. |
21 | HE C X, GENDENSUREN B, KIM H, et al. Electrochemical performance of polysaccharides modified by the introduction of SO3H as binder for high-powered Li4Ti5O12 anodes in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 876: 114532. |
22 | ZOU K Y, DENG W T, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives[J]. Advanced Functional Materials, 2021, 31(5): 2005581. |
23 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 锂离子电池正极/负极水性黏结剂: T/ZZB 1302—2019 [S]. 北京: 中国标准出版社, 2020. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Lithium-ion battery positive/negative water-based binder: T/ZZB 1302—2019 [S]. Beijing: Standards Press of China, 2020. | |
24 | VANNINI M, MARCHESE P, CELLI A, et al. Synergistic effect of dipentaerythritol and montmorillonite in EVOH-based nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(28): 42265. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[8] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[9] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[10] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[11] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[15] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 324
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |