Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 204-214.DOI: 10.16085/j.issn.1000-6613.2020-2576
• Industrial catalysis • Previous Articles Next Articles
DONG Kejing1,2(), XIA Guanghui1,2, YANG Xi1,3(
), ZHAO Yu3
Received:
2020-12-28
Revised:
2021-02-23
Online:
2021-11-09
Published:
2021-10-25
Contact:
YANG Xi
董柯静1,2(), 夏广辉1,2, 杨玺1,3(
), 赵煜3
通讯作者:
杨玺
作者简介:
董柯静(1991—),男,硕士研究生,研究方向为质子交换膜燃料电池催化剂。E-mail:基金资助:
CLC Number:
DONG Kejing, XIA Guanghui, YANG Xi, ZHAO Yu. Research status of platinum-based catalysts with high index crystal plane regulated by additives for oxygen reduction reaction[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 204-214.
董柯静, 夏广辉, 杨玺, 赵煜. 利用添加剂调控铂晶面结构提高氧还原催化性能的研究现状[J]. 化工进展, 2021, 40(S1): 204-214.
1 | SUN H. Recent advances in Pt-based ordered intermetallic catalysts for oxygen reduction reaction[J]. Material Sciences, 2019, 9(5):479-488. |
2 | CHENG F, SU Y, LIANG J, et al. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media[J]. Chemistry of Materials, 2014, 22(3): 898-905. |
3 | ZHANG H, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012, 112(5): 2780-2832. |
4 | YANG W, LIU X, YUE X, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. Journal of the American Chemical Society, 2015, 137(4): 1436. |
5 | ZHU J, XIAO M, LIU C, et al. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts[J]. Journal of Materials Chemistry A, 2015, 3(43): 21451-21459. |
6 | KATSOUNAROS I, CHEREVKO S, ZERADJANIN A R, et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion[J]. Angewandte Chemie International Edition, 2014, 53(1): 102-121. |
7 | PETRII O A, TSIRLINA G A. Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science[J]. Electrochimica Acta, 1994, 39: 1739-1747. |
8 | LI J, CHEN Y, TANG Y, et al. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2014, 2(18): 6316-6319. |
9 | ROOTSAERT W J M, SACHTLER W M H. Interaction of formic acid vapour with tungsten[J]. Zeitschrift Für Physikalische Chemie, 1960, 26(1/2): 16-26. |
10 | NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. |
11 | HAO L, ZHANG S, LIU R, et al. Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reductionreaction[J]. Advanced Materials, 2015, 27(20): 3190-3195. |
12 | STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247. |
13 | MARKOVIC N M, GASTEIGER H A, ROSS P N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk Pt(hkl) studies[J]. Journal of Physical Chemistry, 1996, 99(11): 6715-6721. |
14 | ZHOU Z Y, TIAN N, HUANG Z Z, et al. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method[J]. Faraday Discussions, 2008, 140(1): 81-92. |
15 | FLEISCHMANN M, PLETCHER D, DENUAULT G, et al. The behavior of microdisk and microring electrodes: prediction of the chronoamperometric response of microdisks and of the steady state for CE and EC catalytic reactions by application of Neumann’s integral theorem[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1989, 263(2): 225-236. |
16 | XIAO J, LIU S, TIAN N, et al. Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution[J]. Journal of the American Chemical Society, 2013, 135(50): 18754-18757. |
17 | SUN S D, ZHANG X, CUI J, et al. High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications[J]. Nanoscale, 2019, 11(34): 15739-15762. |
18 | TIAN N, ZHOU Z Y, SUN S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735. |
19 | MARKOVIC N M, GASTEIGER H A, P Net al ROSS. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies[J]. The Journal of Physical Chemistry, 1995, 99(11): 3411-3415. |
20 | MACIA M D, CAMPINA J M, HERRERO E, et al. On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media[J]. Journal of Electroanalytical Chemistry, 2004, 564: 141-150. |
21 | STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
22 | YEAGER E. Electrocatalysts for O2 reduction[J]. Electrochimica Acta, 1984, 29(11): 1527-1537. |
23 | MARKOVI N M, ADI R R, CAHAN B D, et al. Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions[J]. Journal of Electroanalytical Chemistry, 1994, 377(1/2):249-259. |
24 | LI W, HU Z Y, ZHANG Z, et al. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions[J]. Journal of catalysis, 2019, 375: 164-170. |
25 | WU R, TSIAKARAS P, SHEN P K. Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2019, 251: 49-56. |
26 | YU T, KIM D Y, ZHANG H, et al. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction[J]. Angewandte Chemie, 2011, 123(12): 2825-2829. |
27 | 陈瑞. 铂纳米粒子形貌的调控及其电化学性能研究[D]. 昆明: 昆明理工大学, 2018. |
CHEN R, Platinum nanoparticles morphology control and its electrochemical performance study[D]. Kunming: Kunming University of Science and Technology, 2018. | |
28 | 南皓雄, 党岱, 田新龙. 低铂燃料电池氧还原催化剂的制备技术研究进展[J]. 化工进展, 2018, 37(11): 179-187. |
NAN H X, DANG D, TIAN X L. Recent progress in the preparation of oxygen reduction catalysts for low-platinum fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 179-187. | |
29 | SHARMA R, KAR K K. Particle size and crystallographic orientation controlled electrodeposition of platinum nanoparticles on carbon nanotubes[J]. Electrochimica Acta, 2015, 156: 199-206. |
30 | 于迎涛, 徐柏庆. 前驱体水解对纳米铂形状控制合成的影响[J]. 化学学报, 2003,61(11): 1578-1764. |
YU Y T, XU B Q, Effect of precursor hydrolysis on shape-controlled synthesis of Pt nanocrystals[J]. Acta Chimica Sinica2003, 61(11): 1578-1764. | |
31 | CAI Y, MA C, ZHU Y, et al. Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal[J]. Langmuir, 2011, 27(13): 8540-8547. |
32 | YU Y T, XU B Q. Shape-controlled synthesis of Pt nanocrystals: an evolution of the tetrahedral shape[J]. Applied Organometallic Chemistry, 2006, 20(10): 638-647. |
33 | 曹龙生, 万磊, 邵志刚,等. PtCu2八面体形貌调控及氧还原电催化性能研究[J]. 电化学, 2018, 24(6): 130-139. |
CAO L S, WAN L, SHAO Z G, et al. Morphological control of PtCu2 octahedron and oxygen reduction electrocatalytic performance of PtCu for fuel cell[J]. Journal of Electrochemistry, 2018, 24(6): 130-139. | |
34 | WANG D, HU G, YANG P, et al. Using DMH as a complexing agent for pulse electrodeposition of platinum nanoparticles towards oxygen reduction reaction[J]. Ionics, 2020, 26(2):1-10. |
35 | CHEN D H, YE J Y, XU C D, et al. Interaction of citrate with Pt(100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis[J]. Science China (Chemistry), 2012(11): 119-124. |
36 | FU G, WU K, LIN J, et al. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media[J]. Journal of Physical Chemistry C, 2013, 117(19): 9826-9834. |
37 | SAFO I A, WERHEID M, DOSCHE C, et al. The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes[J]. Nanoscale Advances, 2019, 1(8): 3095-3106. |
38 | WANG C, DAIMON H, LEE Y, et al. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction[J]. Journal of the American Chemical Society, 2007, 129(22): 6974-6975. |
39 | HUANG J, DING C, YANG Y, et al. An alternate aqueous phase synthesis of the Pt3Co/C catalyst towards efficient oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2019, 40(12): 1895-1903. |
40 | SHEN L L, ZHANG G R, MIAO S, et al. Core-shell nanostructured Au@NimPt2 electrocatalysts with enhanced activity and durability for oxygen reduction reaction[J]. ACS Catalysis, 2016, 6(3): 1680-1690. |
41 | BU L, GUO S, ZHANG X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis[J]. Nature Communications, 2016, 7(1): 1-10. |
42 | YAN X, JIA Y, ZHANG L, et al. Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media[J]. Chinese Journal of Catalysis, 2017, 38(6): 1011-1020. |
43 | 彭梁梁. 质子交换膜燃料电池阴极催化剂的制备和性能检测[D]. 威海: 山东大学, 2015. |
PENG L L. Preparation and performance test of cathode catalyst for proton exchange membrane fuel cell[D]. Weihai: Shandong University, 2015. | |
44 | GONG K, PARK J, SU D, et al. Metalizing carbon nanotubes with Pd-Pt core-shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction[J]. Journal of Solid State Electrochemistry, 2014, 18(5): 1171-1179. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |