Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6925-6933.DOI: 10.16085/j.issn.1000-6613.2020-2553
• Resources and environmental engineering • Previous Articles Next Articles
WANG Guodong(), GUO Yafei(), LI Jiayuan, YAO Ruixuan, SUN Jian, ZHAO Chuanwen()
Received:
2020-12-23
Revised:
2021-03-06
Online:
2021-12-21
Published:
2021-12-05
Contact:
GUO Yafei,ZHAO Chuanwen
王国栋(), 郭亚飞(), 李佳媛, 姚睿璇, 孙健, 赵传文()
通讯作者:
郭亚飞,赵传文
作者简介:
王国栋(1995—),男,硕士研究生,研究方向为CO2捕集与转化利用。E-mail:基金资助:
CLC Number:
WANG Guodong, GUO Yafei, LI Jiayuan, YAO Ruixuan, SUN Jian, ZHAO Chuanwen. CO2 adsorption and methanation performance of nickel-based catalysts modified with alkali/alkaline-earth metals[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6925-6933.
王国栋, 郭亚飞, 李佳媛, 姚睿璇, 孙健, 赵传文. 碱/碱土金属修饰Ni基催化剂的CO2吸附与甲烷化性能[J]. 化工进展, 2021, 40(12): 6925-6933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2553
催化剂 | 比表面积/m2?g-1 | 孔体积/cm3?g-1 | 平均孔径/nm |
---|---|---|---|
Ni-K2CO3/Al2O3 | 88.1 | 0.19 | 7.6 |
Ni-Na2CO3/Al2O3 | 91.7 | 0.19 | 7.9 |
Ni-MgO/Al2O3 | 52.0 | 0.14 | 9.4 |
CaO-Ni/Al2O3 | 85.2 | 0.18 | 8.1 |
Ni/Al2O3 | 121.8 | 0.26 | 7.4 |
催化剂 | 比表面积/m2?g-1 | 孔体积/cm3?g-1 | 平均孔径/nm |
---|---|---|---|
Ni-K2CO3/Al2O3 | 88.1 | 0.19 | 7.6 |
Ni-Na2CO3/Al2O3 | 91.7 | 0.19 | 7.9 |
Ni-MgO/Al2O3 | 52.0 | 0.14 | 9.4 |
CaO-Ni/Al2O3 | 85.2 | 0.18 | 8.1 |
Ni/Al2O3 | 121.8 | 0.26 | 7.4 |
催化剂 | 温度/℃ | 耗氢量/% | ||||
---|---|---|---|---|---|---|
α | β | γ | α | β | γ | |
NiO/Al2O3 | 493 | 630 | — | 81.1 | 18.9 | — |
Ni-CaO/Al2O3 | 501 | — | 746 | 81.7 | — | 18.3 |
Ni-MgO/Al2O3 | — | 683 | 763 | — | 59.0 | 41.0 |
Ni-Na2CO3/Al2O3 | 457 | 549/709 | — | 59.2 | 40.8 | — |
Ni-K2CO3/Al2O3 | 433 | 709 | — | 81.1 | 18.9 | — |
催化剂 | 温度/℃ | 耗氢量/% | ||||
---|---|---|---|---|---|---|
α | β | γ | α | β | γ | |
NiO/Al2O3 | 493 | 630 | — | 81.1 | 18.9 | — |
Ni-CaO/Al2O3 | 501 | — | 746 | 81.7 | — | 18.3 |
Ni-MgO/Al2O3 | — | 683 | 763 | — | 59.0 | 41.0 |
Ni-Na2CO3/Al2O3 | 457 | 549/709 | — | 59.2 | 40.8 | — |
Ni-K2CO3/Al2O3 | 433 | 709 | — | 81.1 | 18.9 | — |
催化剂 | H2吸附量 /mL?g-1 | Ni分散度 /% | Ni活性比表面积 /m2?g-1 |
---|---|---|---|
Ni-K2CO3/Al2O3 | 0.59 | 3.1 | 20.7 |
Ni-Na2CO3/Al2O3 | 0.64 | 3.3 | 22.2 |
Ni-MgO/Al2O3 | 0.71 | 3.7 | 24.9 |
Ni-CaO/Al2O3 | 0.68 | 3.5 | 23.8 |
Ni/Al2O3 | 0.93 | 4.9 | 32.6 |
催化剂 | H2吸附量 /mL?g-1 | Ni分散度 /% | Ni活性比表面积 /m2?g-1 |
---|---|---|---|
Ni-K2CO3/Al2O3 | 0.59 | 3.1 | 20.7 |
Ni-Na2CO3/Al2O3 | 0.64 | 3.3 | 22.2 |
Ni-MgO/Al2O3 | 0.71 | 3.7 | 24.9 |
Ni-CaO/Al2O3 | 0.68 | 3.5 | 23.8 |
Ni/Al2O3 | 0.93 | 4.9 | 32.6 |
催化剂 | 弱碱性位点(<200℃)/% | 中碱性位点(200~420℃)/% | 强碱性位点(>450℃)/% | 碱性位点密度/μmol?m-2 |
---|---|---|---|---|
Ni-K2CO3/Al2O3 | 39.8 | 26.7 | 33.5 | 3.7 |
Ni-Na2CO3/Al2O3 | 15.5 | 54.5 | 30.0 | 3.7 |
Ni-MgO/Al2O3 | 23.7 | 64.6 | 11.7 | 3.6 |
Ni-CaO/Al2O3 | 12.5 | 63.4 | 24.1 | 3.3 |
Ni/Al2O3 | 34.7 | 23.9 | 41.4 | 2.1 |
催化剂 | 弱碱性位点(<200℃)/% | 中碱性位点(200~420℃)/% | 强碱性位点(>450℃)/% | 碱性位点密度/μmol?m-2 |
---|---|---|---|---|
Ni-K2CO3/Al2O3 | 39.8 | 26.7 | 33.5 | 3.7 |
Ni-Na2CO3/Al2O3 | 15.5 | 54.5 | 30.0 | 3.7 |
Ni-MgO/Al2O3 | 23.7 | 64.6 | 11.7 | 3.6 |
Ni-CaO/Al2O3 | 12.5 | 63.4 | 24.1 | 3.3 |
Ni/Al2O3 | 34.7 | 23.9 | 41.4 | 2.1 |
1 | LEE S C, CHO M S, JUNG S Y, et al. Effects of alumina phases on CO2 sorption and regeneration properties of potassium-based alumina sorbents[J]. Adsorption, 2014, 20(2/3): 331-339. |
2 | MEUL S, DAMERIS M, LANGEMATZ U, et al. Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure[J]. Geophysical Research Letters, 2016, 43(6): 2919-2927. |
3 | DOWELL N MAC, FENNELL P S, SHAH N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
4 | GÖTZ M, LEFEBVRE J, MÖRS F, et al. Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
5 | CIMINO S, BOCCIA F, LISI L. Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane[J]. Journal of CO2 Utilization, 2020, 37: 195-203. |
6 | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: recent progress and future prospects[J]. Green Chemistry, 2015, 17(5): 2647-2663. |
7 | GHAIB K, NITZ K, BEN-FARES F Z. Chemical methanation of CO2: a review[J]. ChemBioEng Reviews, 2016, 3(6): 266-275. |
8 | GAO J J, WANG Y L, PING Y, et al. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances, 2012, 2(6): 2358. |
9 | 孟凡会, 常慧蓉, 李忠. Ni-Mn/Al2O3催化剂在浆态床中CO甲烷化催化性能[J]. 化工学报, 2014, 65(8): 2997-3003. |
MENG F H, CHANG H R, LI Z. Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. CIESC Journal, 2014, 65(8): 2997-3003. | |
10 | GAO J J, LIU Q, GU F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29): 22759-22776. |
11 | FRONTERA P, MACARIO A, FERRARO M, et al. Supported catalysts for CO2 methanation: a review[J]. Catalysts, 2017, 7(12): 59. |
12 | REN J, QIN X, YANG J Z, et al. Methanation of carbon dioxide over Ni-M/ZrO2 (M = Fe, Co, Cu) catalysts: effect of addition of a second metal[J]. Fuel Processing Technology, 2015, 137: 204-211. |
13 | ALDANA P A U, OCAMPO F, KOBL K, et al. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy[J]. Catalysis Today, 2013, 215: 201-207. |
14 | WANG S D, PAN Q S, PENG J X, et al. In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2[J]. Catalysis Science and Technology, 2014, 4(2): 502-509. |
15 | WANG W, GONG J L. Methanation of carbon dioxide: an overview[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 2-10. |
16 | 王东旭, 肖显斌, 高静, 等. 助剂钾对镍基催化剂性能影响研究进展[J]. 化工进展, 2014, 33(3): 668-672. |
WANG D X,XIAO X B,GAO J,et al. A review of potassium promoter effect on nickel-based catalyst performance[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 668-672. | |
17 | OSAKI T, MORI T. Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts[J]. Journal of Catalysis, 2001, 204(1): 89-97. |
18 | ANG M L, OEMAR U, SAW E T, et al. Highly active Ni/xNa/CeO2 catalyst for the water-gas shift reaction: effect of sodium on methane suppression[J]. ACS Catalysis, 2014, 4(9): 3237-3248. |
19 | XU L L, WANG F G, CHEN M D, et al. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. RSC Advances, 2017, 7(30): 18199-18210. |
20 | TAN J J, WANG J M, ZHANG Z Y, et al. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO2 for CO2 methanation[J]. Applied Surface Science, 2019, 481: 1538-1548. |
21 | GUO M, LU G X. The difference of roles of alkaline-earth metal oxides on silica-supported nickel catalysts for CO2 methanation[J]. RSC Advances, 2014, 4(102): 58171-58177. |
22 | YANG W, FENG Y Y, CHU W. Promotion effect of CaO modification on mesoporous Al2O3-supported Ni catalysts for CO2 methanation[J]. International Journal of Chemical Engineering, 2016, 2016: 1-7. |
23 | CHENG C B, SHEN D K, XIAO R, et al. Methanation of syngas (H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189: 419-427. |
24 | ZHANG L J, BIAN L, ZHU Z T, et al. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2197-2206. |
25 | BERMEJO-LÓPEZ A, PEREDA-AYO B, GONZÁLEZ-MARCOS J A, et al. Ni loading effects on dual function materials for capture and in situ conversion of CO2 to CH4 using CaO or Na2CO3[J]. Journal of CO2 Utilization, 2019, 34: 576-587. |
26 | BERMEJO-LÓPEZ A, PEREDA-AYO B, GONZÁLEZ-MARCOS J A, et al. Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2019, 256: 117845. |
27 | JIMÉNEZ-GONZÁLEZ C, BOUKHA Z, DE RIVAS B, et al. Behavior of coprecipitated NiAl2O4/Al2O3 catalysts for low-temperature methane steam reforming[J]. Energy & Fuels, 2014, 28(11): 7109-7121. |
28 | ZHOU L, LI L D, WEI N N, et al. Corrigendum: effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane[J]. ChemCatChem, 2015, 7(16): 2406. |
29 | ZHAO A M, YING W Y, ZHANG H T, et al. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catalysis Communications, 2012, 17: 34-38. |
30 | HU D C, GAO J J, PING Y, et al. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 4875-4886. |
31 | CUI D M, LIU J, YU J, et al. Necessity of moderate metal-support interaction in Ni/Al2O3 for syngas methanation at high temperatures[J]. RSC Advances, 2015, 5(14): 10187-10196. |
32 | SONG K H, YAN X, KOH D J, et al. La effect on the long-term durability of Ni-Mg-Al2O3 catalysts for syngas methanation[J]. Applied Catalysis A: General, 2017, 530: 184-192. |
33 | XU L L, YANG H M, CHEN M D, et al. CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: the promoting effect of basic modifier[J]. Journal of CO2 Utilization, 2017, 21: 200-210. |
34 | SONG G, DING Y D, ZHU X, et al. Carbon dioxide adsorption characteristics of synthesized MgO with various porous structures achieved by varying calcination temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 39-45. |
35 | ASHOK J, KATHIRASER Y, ANG M L, et al. Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Applied Catalysis B: Environmental, 2015, 172/173: 116-128. |
36 | TAN C, GUO Y F, SUN J, et al. Structurally improved MgO adsorbents derived from magnesium oxalate precursor for enhanced CO2 capture[J]. Fuel, 2020, 278: 118379. |
37 | PAN Q S, PENG J X, SUN T J, et al. CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas[J]. Fuel Processing Technology, 2014, 123: 166-171. |
38 | SHOKROLLAHI Y M, RADFARNIA H R, ILIUTA M C. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process[J]. Chemical Engineering Journal, 2016, 283: 420-444. |
39 | ZHOU Z J, SUN N N, WANG B D, et al. 2D-layered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2[J]. ChemSusChem, 2020, 13(2): 360-368. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[9] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[12] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[13] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[14] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |