Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5818-5828.DOI: 10.16085/j.issn.1000-6613.2020-2175
• Resources and environmental engineering • Previous Articles Next Articles
HOU Limin1(), YAN Xiao2, QIAO Chaoyue2, FU Shancong2, WU Wenfei1,2()
Received:
2020-10-30
Revised:
2021-04-07
Online:
2021-10-25
Published:
2021-10-10
Contact:
WU Wenfei
侯丽敏1(), 闫笑2, 乔超越2, 付善聪2, 武文斐1,2()
通讯作者:
武文斐
作者简介:
侯丽敏(1988—),女,博士,讲师,研究方向为矿产资源综合利用、矿物催化剂、CLAS。E-mail:基金资助:
CLC Number:
HOU Limin, YAN Xiao, QIAO Chaoyue, FU Shancong, WU Wenfei. Effect of mechanical force and microwave on the NH3-SCR denitration of rare earth tailings[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5818-5828.
侯丽敏, 闫笑, 乔超越, 付善聪, 武文斐. 机械力-微波活化对稀土尾矿NH3-SCR脱硝性能的影响[J]. 化工进展, 2021, 40(10): 5818-5828.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2175
元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% |
---|---|---|---|---|---|---|---|
Fe | 17.394 | Ca | 17.798 | Si | 8.804 | Mg | 3.104 |
Ce | 1.783 | Al | 1.485 | Na | 1.336 | P | 1.158 |
S | 0.718 | Ba | 0.997 | Nd | 0.683 | Mn | 0.926 |
K | 0.572 | Ti | 0.310 | Nb | 0.112 | Pr | 0.109 |
Sr | 0.099 | Th | 0.031 | Zn | 0.036 | V | 0.008 |
Sc | 0.010 | Pb | 0.017 | Cl | 0.077 | Co | 0.005 |
Pd | 0.003 | I | 0.006 | Zr | 0.004 | Sn | 0.005 |
Ni | 0.002 | Cr | 0.001 | Rb | 0.002 | Te | 0.0016 |
As | 0.0004 | W | 0.0005 | Cu | 0.0025 |
元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% | 元素 | 质量分数 /% |
---|---|---|---|---|---|---|---|
Fe | 17.394 | Ca | 17.798 | Si | 8.804 | Mg | 3.104 |
Ce | 1.783 | Al | 1.485 | Na | 1.336 | P | 1.158 |
S | 0.718 | Ba | 0.997 | Nd | 0.683 | Mn | 0.926 |
K | 0.572 | Ti | 0.310 | Nb | 0.112 | Pr | 0.109 |
Sr | 0.099 | Th | 0.031 | Zn | 0.036 | V | 0.008 |
Sc | 0.010 | Pb | 0.017 | Cl | 0.077 | Co | 0.005 |
Pd | 0.003 | I | 0.006 | Zr | 0.004 | Sn | 0.005 |
Ni | 0.002 | Cr | 0.001 | Rb | 0.002 | Te | 0.0016 |
As | 0.0004 | W | 0.0005 | Cu | 0.0025 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W |
---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W |
---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W | 指标 |
---|---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) | 0.40 |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) | 0.30 |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) | 0.18 |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 | 0.46 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.20 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.12 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 | 0.32 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 0.07 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 0.36 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.43 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.41 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.37 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.36 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.19 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.38 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 0.36 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 0.41 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 0.11 |
T1 | 2.09 | 2.32 | 2.42 | 1.54 | 1.73 | 1.88 | 1.59 | |
T2 | 1.71 | 1.58 | 1.65 | 2.18 | 1.85 | 1.95 | 1.91 | |
T3 | 1.62 | 1.52 | 1.35 | 1.94 | 1.84 | 1.59 | 1.92 | |
0.348 | 0.387 | 0.403 | 0.257 | 0.288 | 0.313 | 0.265 | ||
0.285 | 0.263 | 0.275 | 0.363 | 0.308 | 0.325 | 0.318 | ||
0.270 | 0.253 | 0.225 | 0.323 | 0.307 | 0.265 | 0.320 | ||
R | 0.078 | 0.150 | 0.210 | 0.020 | 0.030 | 0.010 | 0.050 | |
SSj | 0.0207 | 0.0662 | 0.01015 | 0.03804 | 0.00148 | 0.01214 | 0.01174 | |
SSt | 0.25678 | |||||||
SSe | 0.00490 |
试验序号 | 球磨时间/h | 球磨转速/r·min-1 | 球料比 | 球直径比 | 微波焙烧温度/℃ | 微波焙烧时间/min | 微波焙烧功率/W | 指标 |
---|---|---|---|---|---|---|---|---|
1 | 1(2) | 1(300) | 1(1∶1) | 1(5∶3∶1) | 1(150) | 1(5) | 1(300) | 0.40 |
2 | 1 | 2(600) | 2(10∶1) | 2(1∶1∶1) | 2(250) | 2(20) | 2(700) | 0.30 |
3 | 1 | 3(900) | 3(20∶1) | 3(1∶3∶5) | 3(350) | 3(35) | 3(1100) | 0.18 |
4 | 2(8) | 1 | 1 | 2 | 2 | 3 | 3 | 0.46 |
5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.20 |
6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.12 |
7 | 3(14) | 1 | 2 | 1 | 3 | 2 | 3 | 0.32 |
8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 0.07 |
9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 0.36 |
10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.43 |
11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.41 |
12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.37 |
13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.36 |
14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.19 |
15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.38 |
16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 0.36 |
17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 0.41 |
18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 0.11 |
T1 | 2.09 | 2.32 | 2.42 | 1.54 | 1.73 | 1.88 | 1.59 | |
T2 | 1.71 | 1.58 | 1.65 | 2.18 | 1.85 | 1.95 | 1.91 | |
T3 | 1.62 | 1.52 | 1.35 | 1.94 | 1.84 | 1.59 | 1.92 | |
0.348 | 0.387 | 0.403 | 0.257 | 0.288 | 0.313 | 0.265 | ||
0.285 | 0.263 | 0.275 | 0.363 | 0.308 | 0.325 | 0.318 | ||
0.270 | 0.253 | 0.225 | 0.323 | 0.307 | 0.265 | 0.320 | ||
R | 0.078 | 0.150 | 0.210 | 0.020 | 0.030 | 0.010 | 0.050 | |
SSj | 0.0207 | 0.0662 | 0.01015 | 0.03804 | 0.00148 | 0.01214 | 0.01174 | |
SSt | 0.25678 | |||||||
SSe | 0.00490 |
影响因素 | 离差平方和 | 自由度 | 方差 | 统计量 | 重要程度 |
---|---|---|---|---|---|
球磨时间 | 0.02074 | 2 | 0.01037 | 4.23356 | [*] |
转子转速 | 0.66200 | 2 | 0.03309 | 13.20567 | (*) |
球料比 | 0.10150 | 2 | 0.05077 | 20.72335 | * |
球直径比 | 0.03800 | 2 | 0.01902 | 7.764172 | [*] |
微波焙烧温度 | 0.00150 | 2 | 0.00074 | 0.30158 | |
微波焙烧时间 | 0.01210 | 2 | 0.00607 | 2.47845 | |
微波焙烧功率 | 0.01170 | 2 | 0.00587 | 2.39682 | |
误差 | 0.00490 | 2 | 0.00245 | — |
影响因素 | 离差平方和 | 自由度 | 方差 | 统计量 | 重要程度 |
---|---|---|---|---|---|
球磨时间 | 0.02074 | 2 | 0.01037 | 4.23356 | [*] |
转子转速 | 0.66200 | 2 | 0.03309 | 13.20567 | (*) |
球料比 | 0.10150 | 2 | 0.05077 | 20.72335 | * |
球直径比 | 0.03800 | 2 | 0.01902 | 7.764172 | [*] |
微波焙烧温度 | 0.00150 | 2 | 0.00074 | 0.30158 | |
微波焙烧时间 | 0.01210 | 2 | 0.00607 | 2.47845 | |
微波焙烧功率 | 0.01170 | 2 | 0.00587 | 2.39682 | |
误差 | 0.00490 | 2 | 0.00245 | — |
催化剂 | 峰值温度/℃ | 峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 159 | 253 | 477 | 216 | 432 | 209 |
3号催化剂 | 147 | 316 | 464 | 578 | 1021 | 303 |
4号催化剂 | 137 | 327 | 473 | 226 | 291 | 350 |
13号催化剂 | 159 | 338 | 474 | 373 | 515 | 103 |
催化剂 | 峰值温度/℃ | 峰面积 | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | S1 | S2 | S3 | |
稀土尾矿 | 159 | 253 | 477 | 216 | 432 | 209 |
3号催化剂 | 147 | 316 | 464 | 578 | 1021 | 303 |
4号催化剂 | 137 | 327 | 473 | 226 | 291 | 350 |
13号催化剂 | 159 | 338 | 474 | 373 | 515 | 103 |
1 | BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016, 13: 133-141. |
2 | 陆强, 裴鑫琦, 徐明新, 等. SCR脱硝催化剂抗砷中毒改性优化与再生研究进展[J]. 化工进展, 2021, 40(5): 2365-2374. |
LU Qiang, PEI Xinqi, XU Mingxin, et al. Progress in the development and regeneration of SCR catalysts for anti-arsenic poisoning[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2365-2374. | |
3 | 环境保护部. 钢铁烧结、球团工业大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2012. |
Minsitey of Environment Protection of the People’s Republic of China. Emission standard of air pollutants for sintering and pelletizing of iron and steel industry: [S]. Beijing: China Environment Science Press, 2012. | |
4 | DELMAS R, SER A D, JAMBERT C. Global inventory of NOx sources[J]. Nutrient Cycling in Agroecosystems, 1997, 48(1): 51-60. |
5 | 刘勇军, 王雪娇, 巩梦丹, 等. 氮氧化物控制技术现状与进展[J]. 四川环境, 2014, 33(6): 115-117. |
LIU Yongjun, WANG Xuejiao, GONG Mengdan, et al. Current situation and progress of nitrogen oxide pollution control technology[J]. Sichuan Environment, 2014, 33(6): 115-117. | |
6 | FU M F, LI C T, LU P, et al. A review on selective catalytic reduction of NOx by supported catalysts at 100-300℃—Catalysts, mechanism, kinetics[J]. Catalysis Science & Technology, 2014, 4(1): 14-25. |
7 | LI J, CHANG H, MA L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review[J]. Catalysis Today, 2011, 175(1): 147-156. |
8 | HUANG B, HUANG R, JIN D, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today, 2007, 126(3-4): 279-283. |
9 | WNAG X B, GUI K T. Fe2O3 particles as superior catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2013, 25(12): 2469-2475. |
10 | KAPTEIJN F, SINGOREDJO L, ANDREINI A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental, 1994, 3(2/3): 173-189. |
11 | WANG X B, WU S G, ZOU W X, et al. Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chinese Journal of Catalysis, 2016, 37(8): 1314-1323. |
12 | 章贤臻, 王世磊, 李运姣, 等. 天然锰矿低温NH3-SCR烟气脱硝实验研究[J]. 矿产保护与利用, 2019, 39(3): 167-172. |
ZHANG Xianzhen, WANG Shilei, LI Yunjiao, et al. Technological study of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 167-172. | |
13 | 徐永鹏, 刘海波, 陈冬, 等. 酸浸天然锰矿石低温氧化脱硝性能研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(8): 1133-1138, 1143. |
XU Yongpeng, LIU Haibo, CHEN Dong, et al. Performance of acid dipping of natural manganese ore for denitration with low temperature oxidation[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(8): 1133-1138, 1143. | |
14 | 卢慧霞, 归柯庭. 铁矿石SCR低温脱硝催化剂的改性研究[J]. 动力工程学报, 2017, 37(9): 726-731. |
LU Huixia, GUI Keting. Study on modification of iron ore catalysts for low-temperature SCR denitrification[J]. Journal of Chinese Society of Power Engineering, 2017, 37(9): 726-731. | |
15 | ZHANG Y, LIN H, DONG Y B, et al. Coupling relationship between multicomponent recovery of rare earth tailings[J]. Rare Metals, 2017, 36(3): 220-228. |
16 | WANG L, LIANG T. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 2014, 88: 23-29. |
17 | 郑强. 综合回收白云鄂博弱磁尾矿中铁、稀土、氟和磷的研究[D]. 沈阳: 东北大学, 2017. |
ZHENG Qiang. Studies on comprehensive recovery of iron, rare earth, fluorine, and phosphorus from Bayan Obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017. | |
18 | 付强, 金建文, 李磊. 白云鄂博尾矿库中铁的赋存状态研究[J]. 矿冶, 2017, 26(3): 94-98. |
FU Qiang, JIN Jianwen, LI Lei. The study of iron occurrence state in Baiyun Obo tailings[J]. Mining & Metallurgy, 2017, 26(3): 94-98. | |
19 | 张悦, 林海, 董颖博, 等. 白云鄂博地区尾矿中铁、铌、稀土、萤石综合回收研究[J]. 稀有金属, 2017, 41(7): 799-809. |
ZHANG Yue, LIN Hai, DONG Yingbo, et al. Comprehensive recovery of iron, niobium, rare earth and fluorite in Bayan Obo tailings[J]. Chinese Journal of Rare Metals, 2017, 41(7): 799-809. | |
20 | 付强, 金建文, 李磊, 等. 白云鄂博尾矿中稀土的赋存状态研究[J]. 稀土, 2017, 38(5): 103-110. |
FU Qiang, JIN Jianwen, LI Lei, et al. The study of REE occurrence state in Bayan Obo tailings[J]. Chinese Rare Earths, 2017, 38(5): 103-110. | |
21 | 宋增凯, 陈菓, 彭金辉, 等. 微波加热技术在典型冶金工艺中的应用研究进展[J]. 矿冶, 2014, 23(3): 57-63. |
SONG Zengkai, CHEN Guo, PENG Jinhui, et al. Research progress of application of microwave heating in typical metallurgical technology[J]. Mining & Metallurgy, 2014, 23(3): 57-63. | |
22 | GONG Z J, WU W F, ZHAO Z W, et al. Synergy between ferric oxide and rare earth oxides in rare earth tailings for the denitration of semi-coke[J]. Catalysis Today, 2018, 318: 175-179. |
23 | GONG Z J, WU W F, ZHAO Z W, et al. Combination of catalytic combustion and catalytic denitration on semi-coke with Fe2O3 and CeO2[J]. Catalysis Today, 2018, 318: 59-65. |
24 | 龚志军, 武文斐, 张凯, 等. 白云鄂博稀土矿物催化半焦燃烧与脱硝特性的研究[J]. 中国稀土学报, 2018, 36(5): 564-570. |
GONG Zhijun, WU Wenfei, ZHANG Kai, et al. Characteristics of char combustion and NOx abatement catalyzed with rare earth ore[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 564-570. | |
25 | QI G, YANG R T, CHANG R. MnOx-CeOx mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106. |
26 | 程蕾. 高能球磨法制备Mg2TiO4、MgO纳米粉体及其陶瓷的微波介电性能研究[D]. 西安: 陕西师范大学, 2013. |
CHENG Lei. Microwave dielectric properties of Mg2TiO4 and MgO nano powders and the ceramics prepared by high energy ball milling[D]. Xi’an: Shaanxi Normal University, 2013. | |
27 | 吴清军. 高能球磨法制备SiC/Al复合材料[D]. 昆明: 昆明理工大学, 2012. |
WU Qingjun. SiC/Al composites prepared by high energy ball milling[D]. Kunming: Kunming University of Science and Technology, 2012. | |
28 | WANG X Y, ZHENG J S, FU R, et al. Effect of microwave power and irradiation time on the performance of Pt/C catalysts synthesized by pulse-microwave assisted chemical reduction[J]. Chinese Journal of Catalysis, 2011, 32(4): 599-605. |
29 | 黄宇坤. 微波强化分解包头稀土矿清洁工艺的基础研究[D]. 沈阳: 东北大学, 2017. |
HUANG Yukun. A fundamental study on a cleaning process of mixed rare earth ore from Baotou decomposed with microwave heating[D]. Shenyang: Northeastern University, 2017. | |
30 | 雷鹰. 微波强化还原低品位钛精矿新工艺及理论研究[D]. 昆明: 昆明理工大学, 2011. |
LEI Ying. New technology and theoretical study on microwave enhanced reduction of low grade titanium concentrate[D]. Kunming: Kunming University of Science and Technology, 2011. | |
31 | 滕兆龙. 锰基复合柱撑蒙脱土催化剂制备与脱硝活性研究[D]. 沈阳: 东北大学, 2018. |
TENG Zhaolong. Preparation and denitration activity of manganese base composite pillared clay catalyst[D]. Shenyang: Northeastern University, 2018. | |
32 | 刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2007. |
LIU Wenqing. Experimental design[M]. Beijing: Tsinghua University Press, 2007. | |
33 | 左亚军. 基于正交试验法的注塑机合模机构的优化设计研究[D]. 广州: 广东工业大学, 2012. |
ZUO Yajun. Research on optimal design of clamping mechanism for an injection machine using orthogonal design method[D]. Guangzhou: Guangdong University of Technology, 2012. | |
34 | 成岳, 夏光华. 科学研究与工程试验设计方法[M]. 武汉: 武汉理工大学出版社, 2005. |
CHENG Yue, XIA Guanghua. Design method of scientific research and engineering experiment[M]. Wuhan: Wuhan University of Technology Press, 2005. | |
35 | WEI M Q, YU Q B, MU T T, et al. Preparation and characterization of waste ion-exchange resin-based activated carbon for CO2 capture[J]. Adsorption, 2016, 22(3): 385-396. |
36 | WEI M Q, YU Q B, DUAN W J, et al. CO2 adsorption and desorption performance of waste ion-exchange resin-based activated carbon[J]. Environmental Progress & Sustainable Energy, 2018, 37(2): 703-711. |
37 | 杨洋, 胡准, 米容立, 等. Mn负载量对nMnOx/TiO2催化剂NH3-SCR催化性能的影响[J]. 分子催化, 2020, 34(4): 313-322. |
YANG Yang, HU Zhun, MI Rongli, et al. Effect of Mn loading on catalytic performance of nMnOx/TiO2 in NH3-SCR reaction[J]. Journal of Molecular Catalysis, 2020, 34(4): 313-322. | |
38 | 周超, 赵阳, 徐佳, 等. pH值对浸渍法制备的铈钨钛脱硝催化剂的影响[J]. 稀土, 2020, 41(5): 59-69. |
ZHOU Chao, ZHAO Yang, XU Jia, et al. Effect of pH on denitration performance of CeWTi catalyst[J]. Chinese Rare Earths, 2020, 41(5): 59-69. | |
39 | ZHU X B, WANG Y L, HUANG Y, et al. Selective catalytic reduction of NO with NH3 over Ce-W-Ti oxide catalysts prepared by solvent combustion method[J]. Applied Sciences, 2018, 8(12): 2430-2439. |
40 | 余雅昕. 铁基NH3-SCR催化剂的低温脱硝性能及抗SO2中毒机制研究[D]. 南京: 南京大学, 2020. |
YU Yaxin. Study on the mechanism of SO2 resistance and the catalytic performance in low-temperature selective catalytic reduction of NO by NH3 over Fe-based catalysts[D]. Nanjing: Nanjing University, 2020. | |
41 | 黄秀兵, 王鹏, 陶进长, 等. CeO2修饰Mn-Fe-O复合材料及其NH3-SCR脱硝催化性能[J]. 无机材料学报, 2020, 35(5): 573-580. |
HUANG Xiubing, WANG Peng, TAO Jinzhang, et al. CeO2 modified Mn-Fe-O composites and their catalytic performance for NH3-SCR of NO[J]. Journal of Inorganic Materials, 2020, 35(5): 573-580. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |