Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 439-445.DOI: 10.16085/j.issn.1000-6613.2020-2170
• Resources and environmental engineering • Previous Articles Next Articles
Received:
2020-10-30
Revised:
2021-03-01
Online:
2021-11-09
Published:
2021-10-25
作者简介:
贺远鹏(1974—),男,工程师,研究方向为海上油田危废处理。E-mail:CLC Number:
HE Yuanpeng. Treatment of offshore production flowback fluid with composite flocculant by response surface methodology[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 439-445.
贺远鹏. 响应曲面法复配混凝剂处理海上生产返排液[J]. 化工进展, 2021, 40(S1): 439-445.
因素 | 编码 | 各水平取值 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
m(PSAF)/m(PAM) | X1 | 20 | 15 | 10 |
复配温度/℃ | X2 | 50 | 60 | 70 |
复配熟化时间/h | X3 | 2.5 | 3 | 3.5 |
因素 | 编码 | 各水平取值 | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
m(PSAF)/m(PAM) | X1 | 20 | 15 | 10 |
复配温度/℃ | X2 | 50 | 60 | 70 |
复配熟化时间/h | X3 | 2.5 | 3 | 3.5 |
序号 | 因素编码值 | 因素实际值 | COD实验值 /mg · L-1 | COD预测值 /mg · L-1 | ||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 | X2/℃ | X3/h | |||
1 | 0 | 0 | 0 | 15 | 60 | 3 | 867 | 817 |
2 | 0 | 0 | 0 | 15 | 60 | 3 | 765 | 817 |
3 | 1 | 1 | 0 | 10 | 70 | 3 | 1078 | 1057.36 |
4 | 0 | 1 | -1 | 15 | 70 | 2.5 | 1023 | 1033.63 |
5 | 0 | 0 | 0 | 15 | 60 | 3 | 798 | 817 |
6 | 1 | 0 | 1 | 10 | 60 | 3.5 | 1329 | 1350.74 |
7 | -1 | -1 | 0 | 20 | 50 | 3 | 1157 | 1177.62 |
8 | 1 | 0 | -1 | 10 | 60 | 2.5 | 1397 | 1407.24 |
9 | 0 | -1 | 1 | 15 | 50 | 3.5 | 1105 | 1094.37 |
10 | 0 | 0 | 0 | 15 | 60 | 3 | 843 | 817 |
11 | -1 | 0 | 1 | 20 | 60 | 10 | 1278 | 1267.76 |
12 | 1 | -1 | 0 | 10 | 50 | 3 | 1189 | 1178.1 |
13 | 0 | 0 | 0 | 15 | 60 | 3 | 812 | 817 |
14 | -1 | 0 | -1 | 20 | 60 | 2.5 | 1432 | 1410.26 |
15 | 0 | 1 | 1 | 20 | 70 | 3.5 | 987 | 986.13 |
16 | 0 | -1 | -1 | 15 | 50 | 2.5 | 1245 | 1245.87 |
17 | -1 | 1 | 0 | 20 | 70 | 3 | 967 | 977.88 |
序号 | 因素编码值 | 因素实际值 | COD实验值 /mg · L-1 | COD预测值 /mg · L-1 | ||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 | X2/℃ | X3/h | |||
1 | 0 | 0 | 0 | 15 | 60 | 3 | 867 | 817 |
2 | 0 | 0 | 0 | 15 | 60 | 3 | 765 | 817 |
3 | 1 | 1 | 0 | 10 | 70 | 3 | 1078 | 1057.36 |
4 | 0 | 1 | -1 | 15 | 70 | 2.5 | 1023 | 1033.63 |
5 | 0 | 0 | 0 | 15 | 60 | 3 | 798 | 817 |
6 | 1 | 0 | 1 | 10 | 60 | 3.5 | 1329 | 1350.74 |
7 | -1 | -1 | 0 | 20 | 50 | 3 | 1157 | 1177.62 |
8 | 1 | 0 | -1 | 10 | 60 | 2.5 | 1397 | 1407.24 |
9 | 0 | -1 | 1 | 15 | 50 | 3.5 | 1105 | 1094.37 |
10 | 0 | 0 | 0 | 15 | 60 | 3 | 843 | 817 |
11 | -1 | 0 | 1 | 20 | 60 | 10 | 1278 | 1267.76 |
12 | 1 | -1 | 0 | 10 | 50 | 3 | 1189 | 1178.1 |
13 | 0 | 0 | 0 | 15 | 60 | 3 | 812 | 817 |
14 | -1 | 0 | -1 | 20 | 60 | 2.5 | 1432 | 1410.26 |
15 | 0 | 1 | 1 | 20 | 70 | 3.5 | 987 | 986.13 |
16 | 0 | -1 | -1 | 15 | 50 | 2.5 | 1245 | 1245.87 |
17 | -1 | 1 | 0 | 20 | 70 | 3 | 967 | 977.88 |
因素 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 738847.72 | 9.00 | 82094.19 | 65.77 | <0.0001 |
A[m(PSAF)/m(PAM)] | 3160.13 | 1.00 | 3160.13 | 2.53 | 0.1556 |
B(复配温度) | 51360.13 | 1.00 | 51360.13 | 41.15 | 0.0004 |
C(复配熟化时间) | 19800.50 | 1.00 | 19800.50 | 15.86 | 0.0053 |
AB | 1560.25 | 1.00 | 1560.25 | 1.25 | 0.3004 |
AC | 1849.00 | 1.00 | 1849.00 | 1.48 | 0.2630 |
BC | 2704.00 | 1.00 | 2704.00 | 2.17 | 0.1845 |
A2 | 318131.64 | 1.00 | 318131.64 | 254.89 | <0.0001 |
B2 | 145.33 | 1.00 | 145.33 | 0.12 | 0.7429 |
C2 | 300445.33 | 1.00 | 300445.33 | 240.72 | <0.0001 |
残差 | 8736.75 | 7.00 | 1248.11 | ||
失拟项 | 2470.75 | 3.00 | 823.58 | 13.45 | 0.0145 |
误差项 | 6266.00 | 4.00 | 1566.50 | ||
总计 | 747584.47 | 16.00 |
因素 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 738847.72 | 9.00 | 82094.19 | 65.77 | <0.0001 |
A[m(PSAF)/m(PAM)] | 3160.13 | 1.00 | 3160.13 | 2.53 | 0.1556 |
B(复配温度) | 51360.13 | 1.00 | 51360.13 | 41.15 | 0.0004 |
C(复配熟化时间) | 19800.50 | 1.00 | 19800.50 | 15.86 | 0.0053 |
AB | 1560.25 | 1.00 | 1560.25 | 1.25 | 0.3004 |
AC | 1849.00 | 1.00 | 1849.00 | 1.48 | 0.2630 |
BC | 2704.00 | 1.00 | 2704.00 | 2.17 | 0.1845 |
A2 | 318131.64 | 1.00 | 318131.64 | 254.89 | <0.0001 |
B2 | 145.33 | 1.00 | 145.33 | 0.12 | 0.7429 |
C2 | 300445.33 | 1.00 | 300445.33 | 240.72 | <0.0001 |
残差 | 8736.75 | 7.00 | 1248.11 | ||
失拟项 | 2470.75 | 3.00 | 823.58 | 13.45 | 0.0145 |
误差项 | 6266.00 | 4.00 | 1566.50 | ||
总计 | 747584.47 | 16.00 |
项目 | 浊度 | COD/mg · L-1 | 含油量/mg · L-1 | 氨氮/mg · L-1 |
---|---|---|---|---|
处理前 | 460 | 13380.65 | 125.65 | 20.6 |
处理后 | 35 | 854.34 | 30.45 | 5.3 |
降低率/% | 92.39 | 93.62 | 75.77 | 74.27 |
项目 | 浊度 | COD/mg · L-1 | 含油量/mg · L-1 | 氨氮/mg · L-1 |
---|---|---|---|---|
处理前 | 460 | 13380.65 | 125.65 | 20.6 |
处理后 | 35 | 854.34 | 30.45 | 5.3 |
降低率/% | 92.39 | 93.62 | 75.77 | 74.27 |
1 | 刘义刚, 黄利平, 黄波, 等. 海上油田酸化返排液处理技术[J]. 精细与专用化学品, 2020, 28(1): 25-29. |
LIU Yigang, HUANG Liping, HUANG Bo, et al. Treatment technology of acidizing flowback fluid in offshore oilfield[J]. Fine and Specialty Chemicals, 2020, 28(1): 25-29. | |
2 | 孟祥海, 黄利平, 黄波, 等. 渤海油田油井酸化返排液特征及处理工艺研究[J]. 油气田地面工程, 2020, 39(4): 25-30. |
MENG Xianghai, HUANG Liping, HUANG Bo, et al. Characteristics and treatment technology of acidizing flowback fluid in Bohai Oilfield[J]. Oil and Gas Field Surface Engineering, 2020, 39(4): 25-30. | |
3 | 谭振兴. 油田返排液处理技术研究与应用[J]. 中国石油和化工标准与质量, 2019, 39(13): 205-206. |
TAN Zhenxing. Research and application of oilfield flowback fluid treatment technology[J]. Standards and quality of China Petroleum and Chemical Industry, 2019, 39(13): 205-206. | |
4 | 张颖苹. GD油田含聚含油污水复配絮凝剂体系实验研究[J]. 石油化工高等学校学报, 2016, 29(1): 63-66. |
ZHANG Yinping. Experimental study on complex flocculant system of polymer and oily water in GD Oilfield[J]. Journal of Petrochemical University, 2016, 29(1): 63-66. | |
5 | 杨开吉, 姚春丽. 高分子复合絮凝剂作用机理及在废水处理中应用的研究进展[J]. 中国造纸, 2019, 38(12): 65-71. |
YANG Kaiji, YAO Chunli. Research Progress on Mechanism of polymer composite flocculant and its application in wastewater treatment[J]. China Paper, 2019, 38(12): 65-71. | |
6 | 赵诗雨, 孙连军, 付道松, 等. 复合高分子絮凝剂的研究与应用进展[J]. 化肥设计, 2018, 56(6): 1-4. |
ZHAO Shiyu, SUN Lianjun, FU Daosong, et al. Research and application progress of composite polymer flocculant[J]. Chemical Fertilizer Design, 2018, 56(6): 1-4. | |
7 | 中国石油天然气总公司,中华人民共和国石油天然气行业标准.絮凝剂评定方法: [S]. 北京: 中国标准出版社,1993. |
China National Petroleum Corporation, petroleum and natural gas industry standard of the people’s Republic of China. Evaluation method of flocculant: [S]. Beijing: China Standards Press, 1993. | |
8 | 宋伟龙, 戴友芝, 唐彬, 等. Box-Behnken响应曲面法优化高聚复配絮凝剂制备条件[J]. 环境工程学报, 2014, 8(7): 2753-2759. |
SONG Weilong, DAI Youzhi, TANG Bin, et al. Optimization of preparation conditions of high polymer composite flocculant by box Behnken response surface methodology[J]. Journal of Environmental Engineering, 2014, 8(7): 2753-2759. | |
9 | 陈斌, 周冰. 采用正交实验法进行复配絮凝剂去除采油废水中的污油实验的研究[J]. 山东化工, 2020, 49(1): 230-231. |
CHEN Bin, ZHOU Bing. The orthogonal experiment was used to study the removal of waste oil from oil production wastewater by compound flocculant[J]. Shandong Chemical Industry, 2020, 49(1): 230-231. | |
10 | 祁风琴, 邓辉. 研究PAFC与CPAM复配絮凝剂对城市生活污水中COD的处理效果[J]. 当代化工研究, 2019(2): 13-14. |
QI Fengqin, DENG Hui. The treatment effect of PAFC and CPAM composite flocculant on COD in urban domestic sewage was studied[J]. Research on Modern Chemical Industry, 2019(2): 13-14. | |
11 | 王刚, 王馨, 宋小三, 等. 响应曲面法中BBD和CCD在优化巯基乙酰化壳聚糖制备条件中的比较[J]. 环境工程学报, 2018, 12(9): 2502-2511. |
WANG Gang, WANG Xin, SONG Xiaosan, et al. Comparison of BBD and CCD in optimization of preparation conditions of mercaptoacetylated chitosan by response surface methodology[J]. Journal of Environmental Engineering, 2018, 12(9): 2502-2511. | |
12 | 冯维东. 响应曲面法优化复配絮凝中药水提液的研究[D]. 天津:天津科技大学, 2018. |
FENG Weidong. Optimization of water extract of compound flocculating Chinese medicine by response surface methodology[D]. Tianjin: Tianjin University of Science and Technology, 2018. | |
13 | 王立果. 响应曲面法优化修饰型纳米零价铁去除地下水中的2,4-二氯苯酚[D]. 兰州: 兰州交通大学,2018. |
WANG Liguo. Optimization of removal of 2,4-dichlorophenol from groundwater by modified nano zero valent iron by response surface methodology[D]. Lanzhou: Lanzhou Jiaotong University, 2018. | |
14 | 蒋绍阶, 冯欣蕊, 李晓恩, 等. 响应面法优化制备PAC-PDMDAAC杂化絮凝剂及其表征[J]. 化工学报, 2014, 65(2): 731-736. |
JIANG Shaojie, FENG Xinrui, LI Xiao’en, et al. Preparation and characterization of PAC-PDMDAAC hybrid flocculant by response surface methodology[J]. CIESC Journal, 2014, 65(2): 731-736. | |
15 | 徐建平, 周润娟. 响应曲面法优化复合絮凝剂的制备工艺[J]. 环境工程学报, 2012, 6(9): 3063-3067. |
XU Jianping, ZHOU Runjuan. Optimization of preparation process of composite flocculant by response surface methodology[J]. Journal of Environmental Engineering, 2012, 6(9): 3063-3067. | |
16 | 邹明玲, 徐建平, 方进, 等. 响应曲面法优化复合混凝剂的制备条件[J]. 安徽工程大学学报, 2012, 27(1): 21-24. |
ZHOU Mingling, XU Jianping, FANG Jin, et al. Optimization of preparation conditions of composite flocculant by response surface methodology[J]. Journal of Anhui University of Technology, 2012, 27(1): 21-24. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[6] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[7] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[8] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[9] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[10] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[11] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[12] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[13] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[14] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
[15] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |