Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 4074-4082.DOI: 10.16085/j.issn.1000-6613.2020-1665
• Resources and environmental engineering • Previous Articles Next Articles
LIU Tingting(), XU Dayong(), WANG Lu, YANG Weiwei, XIA Yuyang
Received:
2020-08-20
Revised:
2020-09-30
Online:
2021-07-19
Published:
2021-07-06
Contact:
XU Dayong
通讯作者:
徐大勇
作者简介:
刘婷婷(1993—),女,硕士研究生,研究方向为城市剩余污泥资源化利用与土壤重金属污染修复。E-mail: 基金资助:
CLC Number:
LIU Tingting, XU Dayong, WANG Lu, YANG Weiwei, XIA Yuyang. Effect of electrode spacing on the removal of Zn and Ni in sludge and its electricity generation performance by CW-MFC[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4074-4082.
刘婷婷, 徐大勇, 王璐, 杨伟伟, 夏宇扬. 电极间距对CW-MFC处理污泥中Zn和Ni的效果及其产电性能的影响[J]. 化工进展, 2021, 40(7): 4074-4082.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1665
含水率/% | pH | 重金属 | 质量分数/mg·kg-1 | 弱酸溶解态/% | 可还原态/% | 可氧化态/% | 残渣态/% |
---|---|---|---|---|---|---|---|
90.81 | 7.15 | Zn | 3550.02 | 11.30 | 9.31 | 24.90 | 54.49 |
Ni | 1552.50 | 15.53 | 17.68 | 30.39 | 36.40 |
含水率/% | pH | 重金属 | 质量分数/mg·kg-1 | 弱酸溶解态/% | 可还原态/% | 可氧化态/% | 残渣态/% |
---|---|---|---|---|---|---|---|
90.81 | 7.15 | Zn | 3550.02 | 11.30 | 9.31 | 24.90 | 54.49 |
Ni | 1552.50 | 15.53 | 17.68 | 30.39 | 36.40 |
参数 | CW | CW-MFC-NP | 系统A | 系统B | 系统C | 系统D |
---|---|---|---|---|---|---|
阳极液pH | 6.88 | 6.78 | 6.82 | 6.92 | 7.04 | 6.75 |
阳极ORP/mV | -125 | -144 | -236 | -278 | -203 | -155 |
阴极ORP/mV | 102 | 87 | 108 | 121 | 134 | 132 |
ORP梯度/mV | 227 | 231 | 344 | 399 | 337 | 287 |
参数 | CW | CW-MFC-NP | 系统A | 系统B | 系统C | 系统D |
---|---|---|---|---|---|---|
阳极液pH | 6.88 | 6.78 | 6.82 | 6.92 | 7.04 | 6.75 |
阳极ORP/mV | -125 | -144 | -236 | -278 | -203 | -155 |
阴极ORP/mV | 102 | 87 | 108 | 121 | 134 | 132 |
ORP梯度/mV | 227 | 231 | 344 | 399 | 337 | 287 |
处理系统 | 干重/g | 重金属 | 浓度/mg·kg-1 | 富集率/% | |||
---|---|---|---|---|---|---|---|
根系 | 茎叶 | 根系 | 茎叶 | 根系 | 茎叶 | ||
CW | 0.2136 | 0.5274 | Zn | 750.00 | 364.00 | 9.26 | 4.50 |
Ni | 355.33 | 122.71 | 8.88 | 3.07 | |||
系统A | 0.2305 | 0.5507 | Zn | 1925.00 | 654.74 | 23.76 | 8.08 |
Ni | 582.67 | 199.76 | 14.57 | 4.99 | |||
系统B | 0.2241 | 0.5488 | Zn | 1308.33 | 537.21 | 16.15 | 6.63 |
Ni | 535.33 | 172.80 | 13.38 | 4.32 | |||
系统C | 0.2208 | 0.5305 | Zn | 1066.67 | 342.87 | 13.17 | 4.23 |
Ni | 463.42 | 146.61 | 11.59 | 3.67 | |||
系统D | 0.2181 | 0.5279 | Zn | 834.00 | 215.60 | 10.30 | 2.66 |
Ni | 378.90 | 120.70 | 9.47 | 3.02 |
处理系统 | 干重/g | 重金属 | 浓度/mg·kg-1 | 富集率/% | |||
---|---|---|---|---|---|---|---|
根系 | 茎叶 | 根系 | 茎叶 | 根系 | 茎叶 | ||
CW | 0.2136 | 0.5274 | Zn | 750.00 | 364.00 | 9.26 | 4.50 |
Ni | 355.33 | 122.71 | 8.88 | 3.07 | |||
系统A | 0.2305 | 0.5507 | Zn | 1925.00 | 654.74 | 23.76 | 8.08 |
Ni | 582.67 | 199.76 | 14.57 | 4.99 | |||
系统B | 0.2241 | 0.5488 | Zn | 1308.33 | 537.21 | 16.15 | 6.63 |
Ni | 535.33 | 172.80 | 13.38 | 4.32 | |||
系统C | 0.2208 | 0.5305 | Zn | 1066.67 | 342.87 | 13.17 | 4.23 |
Ni | 463.42 | 146.61 | 11.59 | 3.67 | |||
系统D | 0.2181 | 0.5279 | Zn | 834.00 | 215.60 | 10.30 | 2.66 |
Ni | 378.90 | 120.70 | 9.47 | 3.02 |
系统名称 | 最高输出电压/mV | 内阻/Ω | 最大功率密度/mW·m-3 |
---|---|---|---|
CW-MFC-NP | 264 | 583.43 | 19.72 |
系统A | 513 | 646.78 | 74.47 |
系统B | 545 | 526.24 | 84.05 |
系统C | 256 | 697.70 | 18.54 |
系统D | 228 | 877.15 | 14.71 |
系统名称 | 最高输出电压/mV | 内阻/Ω | 最大功率密度/mW·m-3 |
---|---|---|---|
CW-MFC-NP | 264 | 583.43 | 19.72 |
系统A | 513 | 646.78 | 74.47 |
系统B | 545 | 526.24 | 84.05 |
系统C | 256 | 697.70 | 18.54 |
系统D | 228 | 877.15 | 14.71 |
1 | 郭广慧, 陈同斌, 杨军, 等. 中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014, 34(10): 2455-2461. |
GUO Guanghui, CHEN Tongbin, YANG Jun, et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of China[J]. Acta Scientiae Circumstantiae, 2014, 34(10): 2455-2461. | |
2 | ŠČANČAR J, MILAČIČ R, STRAŽAR M, et al. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge[J]. Science of the Total Environment, 2000, 250(1/2/3): 9-19. |
3 | MILLER F S, KILMINSTER K L, DEGENS B, et al. Relationship between metals leached and soil type from potential acid sulphate soils under acidic and neutral conditions in Western Australia[J]. Water, Air, and Soil Pollution, 2009, 205(1/2/3/4): 133-147. |
4 | 邱秀文, 周桂香, 王天烽, 等. 氧化硫硫杆菌JJU-1生物淋滤去除污泥中的重金属[J]. 环境工程学报, 2017, 11(9): 5201-5206. |
QIU Xiuwen, ZHOU Guixiang, WANG Tianfeng, et al. Bioleaching of heavy metal from sewage sludge by Thiobacillus thiooxidan JJU-1[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5201-5206. | |
5 | PENG G Q, TIAN G M, LIU J Z, et al. Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology[J]. Desalination, 2011, 271(1/2/3): 100-104. |
6 | 朱亦珺.生物吸附法处理污泥中重金属镍[J]. 有色金属工程,2019, 9(7): 104-108. |
ZHU Yijun. Disposal of sludge containing nickel heavy metals by biosorption[J]. Nonferrous Metals Engineering, 2019, 9(7): 104-108. | |
7 | 解道雷, 孔慈明, 徐龙乾, 等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J]. 化工进展, 2018, 37(1): 330-342. |
XIE Daolei, KONG Ciming, XU Longqian, et al. Developments of the speciation, removal and stabilization of heavy metals in municipal sludge[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 330-342. | |
8 | SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology, 2015, 195: 223-230. |
9 | NIELSEN S, BRUUN E W. Sludge quality after 10—20 years of treatment in reed bed systems[J]. Environmental Science and Pollution Research, 2015, 22(17): 12885-12891. |
10 | TAN X, YANG Y L, LIU Y W, et al. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater[J]. Bioresource Technology, 2019, 280: 441-446. |
11 | 林莉莉, 鲁汭, 龙忆年, 等. MFC处理人工湿地生物堵塞物及同步产电研究[J]. 环境科学研究, 2020, 33(6): 1504-1513. |
LIN Lili, LU Rui, LONG Yinian, et al. MFC treating bio-clogging matter of constructed wetland and synchronous electricity generation[J]. Research of Environmental Sciences, 2020, 33(6): 1504-1513. | |
12 | 夏函青, 伍永钢, 江文亭, 等. 人工湿地-微生物燃料电池系统的发展及展望[J]. 化工进展, 2019, 38(12): 5548-5556. |
XIA Hanqing, WU Yonggang, JIANG Wenting, et al. Review on development and prospect of constructed wetland coupled with microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5548-5556. | |
13 | ABOURACHED C, CATAL T, LIU H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production[J]. Water Research, 2014, 51: 228-233. |
14 | 印霞棐, 刘维平. 电极对微生物燃料电池同时处理有机废水和含铜重金属废水产电性能的影响[J]. 化工进展, 2015, 34(4): 1152-1158, 1170. |
YIN Xiafei, LIU Weiping. The effects of electrode on the electricity generating capacity of microbial fuel cell in the treatment of organic wastewater and copper-contained heavy metal wastewater[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 1152-1158, 1170. | |
15 | HABIBUL N, HU Y, WANG Y K, et al. Bioelectrochemical chromium (Ⅵ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882-3889. |
16 | WU M S, XU X, ZHAO Q, et al. Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells[J]. RSC Advances, 2017, 7(84): 53433-53438. |
17 | LU L, XING D, REN Z J. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell[J]. Bioresource Technology, 2015, 195: 115-121. |
18 | SRIVASTAVA P, YADAV A K, GARANIYA V, et al. Constructed wetland coupled microbial fuel cell technology: development and potential applications[M]. Amsterdam: Elsevier, 2019: 1021-1036. |
19 | ZHAO C C, SHANG D W, ZOU Y L, et al. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(Ⅱ)[J]. Science of the Total Environment, 2020, 732: 139127. |
20 | WANG Q, LYU R, RENE E R, et al. Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (Ⅱ) contaminated wastewater[J]. Bioresource Technology, 2020, 302: 122867. |
21 | WANG H C, CUI D, YANG L H, et al. Increasing the bio-electrochemical system performance in azo dye wastewater treatment: reduced electrode spacing for improved hydrodynamics[J]. Bioresource Technology, 2017, 245: 962-969. |
22 | 胡金凤, 徐龙君, 徐艳昭.电极间距对单室微生物燃料电池处理老龄垃圾渗滤液性能的影响[J]. 太阳能学报, 2019, 40(9): 2687-2694. |
HU Jinfeng, XU Longjun, XU Yanzhao. Effect of electrode spacing on pollutions disposal in aged leachate and electricity production by single-chamber membrane-less air-cathodee MFC[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2687-2694. | |
23 | DOHERTY L, ZHAO Y Q, ZHAO X H, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J]. Chemical Engineering Journal, 2015, 266: 74-81. |
24 | TIWARI B R, GHANGREKAR M M. Enhancing electrogenesis by pretreatment of mixed anaerobic sludge to be used as inoculum in microbial fuel cells[J]. Energy & Fuels, 2015, 29(5): 3518-3524. |
25 | LI X M, ZHANG W, LIU T X, et al. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe (Ⅱ) oxidation at circumneutral pH in paddy soil[J]. Soil Biology and Biochemistry, 2016, 94: 70-79. |
26 | YUAN Y, ZHOU S G, ZHUANG L. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils and Sediments, 2010, 10(7): 1427-1433. |
27 | 杨少龙, 韩志涛, 潘新祥, 等.电解条件对碱性还原电位水理化性质的影响[J]. 水处理技术, 2015, 41(9): 49-52. |
YANG Shaolong, HAN Zhitao, PAN Xinxiang, et al. The influence of electrolytic condition on physicochemical properties of alkaline reduced water[J]. Technology of Water Treatment, 2015, 41(9): 49-52. | |
28 | 王辉. 微生物燃料电池(MFC)对典型土壤污染物的去除作用与机理[D]. 南京: 东南大学, 2018. |
WANG Hui. The removal characteristics and mechanism of typical soil pollutants by microbial fuel cell[D]. Nanjing: Southeast University, 2018. | |
29 | HUANG G T, ZHANG Y C, TANG J W, et al. Remediation of Cd contaminated soil in microbial fuel cells: effects of Cd concentration and electrode spacing[J]. Journal of Environmental Engineering, 2020, 146(7): 04020050. |
30 | LIU Y Y, SHEN L, SONG P, et al. Nickel(Ⅱ) removal from wastewater by microbial fuel cell[J]. International Journal of Electrochemical Science, 2019, 14: 196-204. |
31 | AHMED M H, BYRNE J A, MCLAUGHLIN J, et al. Study of human serum albumin adsorption and conformational change on DLC and silicon doped DLC using XPS and FTIR spectroscopy[J]. Journal of Biomaterials and Nanobiotechnology, 2013, 4(2):194-203. |
32 | SVINTSITSKIY D A, SLAVINSKAYA E M, KARDASH T Y, et al. Low-temperature catalytic CO oxidation over mixed silver-copper oxide Ag2Cu2O3[J]. Applied Catalysis A: General, 2016, 510: 64-73. |
33 | WU Y N, ZHAO X, JIN M, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 372-377. |
34 | LIU W, ZHANG J S, JIN Y J, et al. Adsorption of Pb(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) by extracellular polymeric substances extracted from aerobic granular sludge: efficiency of protein[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1223-1232. |
35 | SHENG G D, YANG S T, SHENG J, et al. Macroscopic and microscopic investigation of Ni(Ⅱ) sequestration on diatomite by batch, XPS, and EXAFS techniques[J]. Environmental Science & Technology, 2011, 45(18): 7718-7726. |
36 | LIU Y Y, SONG P F, GAI R Z, et al. Recovering platinum from wastewater by charring biofilm of microbial fuel cells(MFCs)[J]. Journal of Saudi Chemical Society, 2019, 23(3): 338-345. |
37 | 唐静文.土壤微生物燃料电池产电性能及其修复Cd污染土壤效果的研究[D]. 上海: 华东理工大学,2018. |
TANG Jingwen. Study on the electricity production performance of soil microbial fuel cells and its the remediation to Cd contaminated soil[D]. Shanghai: East China University of Science and Technology, 2018. | |
38 | CHENG S, LOGAN B E. High hydrogen production rate of microbial electrolysis cell(MEC) with reduced electrode spacing[J]. Bioresource Technology, 2011, 102(3): 3571-3574. |
39 | KONDAVEETI S, MOON J M, MIN B. Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator[J]. Bioprocess and Biosystems Engineering, 2017, 40(12): 1851-1858. |
40 | NOORI P, NAJAFPOUR DARZI G. Enhanced power generation in annular single‐chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater[J]. Biotechnology and Applied Biochemistry, 2016, 63(3): 427-434. |
41 | 王艳芳, 刘百仓, 郑哲, 等. 电极面积和电极间距对立方体型MFCs产电能力的影响[J]. 可再生能源, 2013, 31(8): 68-74. |
WANG Yanfang, LIU Baicang, ZHENG Zhe, et al. Effects of the electrode area and electrode spacing on the electricity generation capacity of MFCs[J]. Renewable Energy Resources, 2013,31(8): 68-74. | |
42 | RAMAN K, LAN J C W. Performance and kinetic study of photo microbial fuel cells(PMFCs) with different electrode distances[J]. Applied Energy, 2012, 100: 100-105. |
43 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
44 | DENG H, CHEN Z, ZHAO F. Energy from plants and microorganisms: progress in plant-microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1006-1011. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[7] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[8] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[9] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[10] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[11] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[12] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[13] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[14] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[15] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |