Research progress of catalysts and related technologies for methanol to aromatics
Chengyi DAI(), Zhongshun CHEN, Kang DU, Xiao ZHAO, Yiming SHI, Xingyue CHEN, Dan LIU, Xiaoxun MA()
School of Chemical Engineering, Northwest University, International Science and Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Shanbei Energy and Chemical Industry Development, Xi’an 710069, Shaanxi, China
Chengyi DAI, Zhongshun CHEN, Kang DU, Xiao ZHAO, Yiming SHI, Xingyue CHEN, Dan LIU, Xiaoxun MA. Research progress of catalysts and related technologies for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5029-5041.
LIU Bei. Synthesis and modification of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[D]. Xi’an: Northwest University, 2018.
HU Hualei. Study of the catalitic performance of zeolite catalytysts in benzene alkylation with methanol and the effect of pore structure and surface acidity[D]. Hangzhou: Zhejiang University of Technology,2016.
3
李霞. 我国甲醇制芳烃行业的前景研究[J]. 乙烯工业, 2015(2): 19: 35-37.
3
LI Xia. Prospects of MTA industry in China[J]. Ethylene Industry, 2015(2): 19: 35-37.
4
SHEN Xinquan, KANG Jincan, NIU Wei, et al. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7: 3598-3612.
JIANG Tian, LIU Huawei, KONG Yuhua. Research progress of catalyst for paraxylene by aromatization of methanol[J]. Chemical Engineering Design Communication, 2015, 41(6): 5-7.
6
MICHAEL S. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous & Mesoporous Materials, 1999, 29(1/2): 3-47.
7
郑月明. 催化裂解装置轻烃回炼增产丙烯和降汽油烯烃[D]. 上海: 华东理工大学, 2004.
7
ZHENG Yueming. Study on increasing propylene by recycling light hydrocarbon and decreasing gasoline olefin[D]. Shanghai: East China University of Science and Technology, 2004.
8
MA Hao, SUN Yuan, YU Junping, et al. Theoretical study on the influence of ZSM-5 zeolite with different structures for methanol to aromatics[J]. Microporous & Mesoporous Materials, 2020, 294: 109838.
9
BERG J P VAN DEN, WOLTHUIZEN J P, HOOFF J H C VAN. The conversion of dimethylether tohydrocarbons on zeolite HZSM-5 the reaction mechanism for formation of primary olefins[J]. Proceedings International Zeolite Conference (Naples), 1970(5): 649-660.
10
OLAH G A. Higher coordinate (hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons[J]. Pure & Applied Chemistry, 1971, 53(1): 201-207.
ZHANG Guifeng. Preparation and MTA reaction performance study of b-oriented [Zn, Al]HZSM-5/coal gangue materials with multiporous[D]. Xuzhou: China University of Mining and Technology, 2019.
ZOU Hu, WU Wei, ZI Lei, et al. Review of methanol to aromatics[J]. Journal of Petroleum (Petroleum Processing), 2013, 29(3): 539-547.
13
CLARKE J K A, DARCY R, HEGARTY B F, et al. Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis[J]. Journal of the Chemical Society Chemical Communications, 1976, 5: 425-426.
14
DESSUA R M, LAPIERRE R B. On the mechanism of methanol conversion to hydrocarbons over HZSM-5[J]. Journal of Catalysis, 1972, 77(1): 136-141.
LI Yongxin, WU Runze, XUE Bing. Synthesis of HMCM-22/MCM-41 and catalytic performance for toluene alkylation with dimethyl carbonate[J]. Chemical Industry and Engineering Progress, 2010, 29 (5): 775-779.
16
SWABB E A, GATES B C. Diffusion, reaction, and fouling in H-mordenite crystallites. The catalytic dehydration of methanol[J]. Industrial & Engineering Chemistry Fundamentals, 1972, 11(4): 540-545.
17
SALVADOR P, KLADNIG W. Surface reactivity of zeolites type H-Y and NaY with methanol[J]. Journal of the Chemical Society Faraday Transactions, 1977, 73: 1153-1167.
18
DAHL I M, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336.
19
DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 457-464.
20
DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309.
21
BJ?RGEN M, SVELLE S, JENSEN F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207.
22
崔滕. 锌改性ZSM-5分子筛催化甲醇制芳烃[D]. 大连: 大连理工大学, 2019.
22
CUI Teng. Zinc-modified ZSM-5 molecular sieve catalyzed methanol to aromatics[D]. Dalian: Dalian University of Technology, 2019.
23
CLARENCE D C, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259.
24
SVELLE S, JOENSEN F, NERLOV J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46): 14770.
25
SVELLE Stian, OLSBYE Unni, JOENSEN Finn, et al. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites:? steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. Journal of Physical Chemistry C, 2007, 111(49): 17981-17984.
26
孙爱明. 甲醇催化转化制芳烃反应研究[D]. 武汉: 华中科技大学, 2011.
26
SUN Aiming. Study on the catalytic conversion of methanol to aromatics[D]. Wuhan: Huazhong University of Science and Technology, 2011.
27
DAI Weili, YANG Liu, WANG Chuanming, et al. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation[J]. ACS Catal., 2018, 8(2): 1352-1362.
28
UNNI Olsbye, STIAN Svelle, MORTEN Bj?rgen, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew. Chem. Int. Ed., 2012, 51: 2-24.
29
CUI Zhimin, LIU Qiang, BAIN Shaowei, et al. The role of methoxy groups in methanol to olefin conversion[J]. Journal of Physical Chemistry C, 2008, 112(7): 2685-2688.
30
LI Jinzhe, QI Yue, LIU Zhongmin, et al. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22[J]. Catalysis Letters, 2008, 121(3/4): 303-310.
31
LI Jinzhe, WEI Yingxu, QI Yue, et al. Conversion of methanol over H-ZSM-22: the reaction mechanism and deactivation[J]. Catalysis Today, 2011, 164(1): 288-292.
32
NI Youming, ZHU Wenliang, LIU Zhongmin. H-ZSM-5-catalyzed hydroacylation involved in the coupling of methanol and formaldehyde to aromatics[J]. ACS Catal., 2019, 9: 11398-11403.
33
NI Youming, ZHU Wenliang, LIU Zhongmin. Formaldehyde intermediate participating in the conversion of methanol to aromatics over zinc modified H-ZSM-5[J]. Journal of Energy Chemistry, 2021, 54: 174-178.
34
FREEMAN D, WELLS R P K, HUTCHINGS G J. Methanol to hydrocarbons: enhanced aromatic formatio using composite group 13 oxide/H-ZSM-5 catalysts[J]. Catalysis Letters, 2002, 72(3/4): 217-225.
35
CONTE M, LOPEZ-SANCHEZ J A, HE Q, et al. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catalysis Science & Technology, 2012, 2(1): 105-112.
36
马浩. 改性ZSM-5分子筛催化甲醇制芳烃及其机理研究[D]. 北京: 中国矿业大学, 2019.
36
MA Hao. Study on the mechanism of methanol to aromatics on modified ZSM-5 zeolite[D]. Beijing: China University of Mining and Technology, 2019.
37
ZHANG Yongkun, QU Yixin, WANG Deliang, et al. Cadmium modified HZSM-5: a highly efficient catalyst for selective transformation of methanol to aromatics[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12507-12519.
38
NIU Xianjun, GAO Jie, MIAO Qing, et al. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous & Mesoporous Materials, 2014, 197: 252-261.
39
BI Yi, WANG Yingli, CHEN Xin, et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chinese Journal of Catalysis, 2014, 35(10): 1740-1751.
YANG Lingzhi. Study on synthesis of nano-sized ZSM-5 and catalytic performance in the methanol-to-aromatics reaction[D]. Qingdao: China University of Petroleum (East China), 2017.
41
NI Youming, SUN Aimin, WU Xiaoling, et al. Aromatization of methanol over La/Zn/HZSM-5 catalysts[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 439-445.
42
JIA Yanming, WANG Junwen, ZHANG Kan, et al. Promoted effect of zinc-nickel bimetallic oxides supported on HZSM-5 catalysis in aromatization of methanol[J]. Journal of Energy Chemistry, 2017, 26(3): 540-548.
SHI Yiming, LIU Dan, CHEN Xingyue, et al. Research on modification of ZSM-5 catalyst for co-production of low-carbon olefin from methanol to p-xylene[J]. Coal Conversion, 2020,43(5): 1-9.
44
HSIEH Chi-Ying, CHEN Yu-Yin, LIN Yu-Chuan. Ga-substituted nanoscale HZSM-5 in methanol aromatization: the cooperative action of the Br?nsted acid and the extra-framework Ga species[J]. Ind. Eng. Chem. Res., 2018, 57: 7742-7751.
45
GHANBARI Bahram, ZANGENEH Fatemeh Kazemi, RIZI Zahra Taheri, et al. Highly efficient production of benzene-free aromatics from methanol over low-Si/Al-ratio alkali-modified Fe/Zn/HZSM-5[J]. ACS Omega, 2018, 3:18821-18835.
46
CHANG C D, JACOB S M, SILVESTRI A J, et al. Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst: US 4137440A[P]. 1979-02-06.
MA Hui. Synthesis of modified HZSM-5 zeolite and their catalytic performances in aromatization of methanol[D]. Taiyuan: Taiyuan University of Technology, 2018.
LAI Xianrong, LI Yuan, CHEN Shiping, et al. Progress in methanol to aromatics technologies[J]. Petrochemical Technology and Application, 2014, 32(1): 70-75.
50
钱伯章. 甲醇制芳烃技术新进展[J]. 化学工业, 2013, 31(12): 19-22.
50
QIAN Bozhang. Methanol to aromatics technology progress[J]. Chemical Industry, 2013, 31(12): 19-22.
51
CHEN Zhaohui, WANG Huiqiu, SONG Wenlong, et al. Decentralized methanol feed in a two-stage fluidized bed for process intensification of methanol to aromatics[J]. Chemical Engineering & Processing: Process Intensification, 2020, 154:108049.
LI Wenhuai, ZHANG Qinggeng, HU Jinxian, et al. Aromatic hydrocarbon conversion process and catalyst and catalyst preparation method:CN 100547945C[P]. 2006-05-12.
LI Zhenghang. Synthesis and MTA performance of Zn-containing ZSM-5 catalyst[D]. Dalian: Dalian University of Technology, 2019.
57
CHEN Zhaohui, HOU Yilin, YANG Yifeng. et al. A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics[J]. Chemical Engineering Science, 2019,204: 1-8.
58
WANG Tong, TANG Xiaoping, HUANG Xiaofan, et al. Conversion of methanol to aromatics in fluidized bed reactor[J]. Catalysis Today, 2014, 233: 8-13.
59
CHEN Zhaohui, HOU Yilin, SONG Wenlong, et al. High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology[J]. Chemical Engineering Journal, 2019, 371: 639-646.
60
ZHANG Dongliang. Progress made in toluene disproportionation and alkyl transfer technology[J]. Petroleum Industry Trends, 2002, 10(4): 24-27.
61
孔德金, 杨为民. 芳烃生产技术进展[J]. 化工进展, 2011, 30(1): 16-25.
61
KONG Dejin, YANG Weimin. Advance in technology for production of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 16-25.
WU Wei. Advances and development of aromatics production technologies for an aromatics complex[J]. Journal of Petroleum (Petroleum Processing), 2015, 31(2): 271-275.
TIAN Lei, FU Xiaoqing, LIU Xiaoli, et al. Policy analysis of China’s oil market situation in 2017 and outlook in 2017[J]. China Energy, 2017, 40(1):10-14.
LI Zhaoqing. Study on catalyst for alkylation of toluene with methanol for preparing p-xylene and low-carbon olefin[D]. Qingdao: China University of Petroleum (East China), 2016.
66
LI Junhui, TONG Kai, XI Zhiwen, et al. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci. Technol., 2016, 6: 4702-4713.
GUAN Wenbin, XIN Yubing, WEI Lihu, et al. Research progress of methanol aromatization to produce p-xylene[J]. Coal Chemical Industry, 2019, 47(2): 11-15.
68
ZHANG Guiquan, ZHANG Xin, BAI Ting, et al. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization[J]. Journal of Energy Chemistry, 2015, 24(1): 107-117.
ZHANG Zhizhi, QIN Zhangfeng, WANG Guofu, et al. Toluene disproportionation over HZSM-5 under near critical conditions[J]. Journal of Fuel Chemistry, 2005, 33(1): 96-100.
70
ROLLMANN L D, VALYOCSIK E W. Continuous-stream upflow zeolite crystallization apparatus: US4374093[P]. 1973.
71
ZHANG Chundong, GEUNJAE Kwaka, LEEA Yun-Jo. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability[J]. Microporous & Mesoporous Materials, 2019, 284: 316-326.
72
SUGI Y, KUBOTA Y, KOMURA K, et al. Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides[J]. Applied Catalysis A: General, 2006, 299: 157-166.
TONG Kai, LI Junhui, XI Zhiwen, et al. Study of methanol shape-selective aromatization over ZnO/SiO2/ZSM-5 modified with mental oxide and silicon deposition[J]. Journal of Fuel Chemistry, 2015, 43 (2): 221-227.
74
ZHANG Jingui, QIAN Weizhong, KONG Chuiyan, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2972-2977.
ZHANG Xiubin, LIU Yunqi, LIU Chenguang. Preparation and performance of catalysts for the selective disproportionation of toluene to produce p-xylene[C]//Proceedings of the 3rd National Conference on Industrial Catalysis Technology and Application. 2006.
76
MIYAKE K, HIROTA Y, ONO K, et al. Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5 silicalite-1 core-shell zeolite catalyst[J]. Journal of Catalysis, 2016, 342: 63-66.
77
HU Qingfang, HUANG Xiaofan, CUI Yu, et al. High yield production of C2-C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Advances, 2017, 7(46): 27940-27944.
78
PAN Donghui, SONG Xianghai, YANG Xinghui, et al. Efficient and selective conversion of methanol to para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst[J]. Applied Catalysis A: General, 2017, 557: 15-24.
79
LI Hui, DONG Peng, JI Dong, et al. Effect of the post-treatment of HZSM-5 on catalytic performance for methanol to aromatics[J]. Chemistry Select, 2020, 5: 3413-3419.
80
WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10: 4348.
81
ZHU Xiaolin, ZHANG Jiaoyu, CHENG Ming, et al. Methanol aromatization over Mg-P-modified [Zn, Al]ZSM-5 zeolites for efficient coproduction of para-xylene and light olefins[J]. Ind. Eng. Chem. Res., 2019, 57(42): 19446-19455.
DING Chunhua. Preparation and catalytic properties of catalysts for shape-selective alkylation of toluene with methanol[D]. Dalian: Dalian University of Technology, 2007.
GU Daobin. Research advances in technologies of catalytic alkylation of toluene with methanol to para-xylene[J]. Natural Gas Chemical Industry, 2013(6): 62-66.
85
MAO R L V. Zeolite catalysts: US4615995[P]. 1976-10-07.
86
HU Qiongfang, HUANG Xiaofan, CUI Bcyu, et al. High yield production of C2-C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Adv., 2017, 7: 28940.
XU Lei, LIU Zhongmin, YUAN Cuiyu, et al. A method for producing ethylene/propylene co-production of p-xylene by methanol/dimethyl ether conversion: CN 101602643B[P]. 2009-12-16.
XU Lei, LI Mingzhi, LIU Zhongmin, et al. A catalyst for the conversion of methanol to p-xylene and low-carbon olefins, its preparation method and application: CN 2010101107679[P]. 2010-07-21.
MEI Yonggang, Shuneng OU, MA Yuelong, et al. A method for preparing aromatic hydrocarbon co-production of propylene by methanol/dimethylether: CN 101607757B[P]. 2009-12-23.
ZHAO Xiaoyan, PAN Mingwang, YUAN Jinfeng, et al. Green synthesis of biurea[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 151-154.
92
MOHAMMED Albahar, LI Chaozhou, Zholobenko VLADIMIR L, et al. The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation[J]. Microporous & Mesoporous Materials, 2020, 302: 110221.
ZHAN Deding. Study on dethiophene performance and reaction conditions of HZSM-5 catalyst under non-hydrogen conditions[D]. Beijing: China University of Petroleum,2007.
GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun.
Research progress of zeolite for VOCs removal
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730.