1 | 刘备. 小晶粒HZSM-5分子筛的制备、改性及其甲醇制芳烃催化性能研究[D]. 西安: 西北大学, 2018. | 1 | LIU Bei. Synthesis and modification of small crystal HZSM-5 zeolite and catalytic performance in methanol to aromatics[D]. Xi’an: Northwest University, 2018. | 2 | 胡华雷. 分子筛催化苯和甲醇烷基化性能及与孔结构和表面酸性的关系[D]. 杭州: 浙江工业大学,2016. | 2 | HU Hualei. Study of the catalitic performance of zeolite catalytysts in benzene alkylation with methanol and the effect of pore structure and surface acidity[D]. Hangzhou: Zhejiang University of Technology,2016. | 3 | 李霞. 我国甲醇制芳烃行业的前景研究[J]. 乙烯工业, 2015(2): 19: 35-37. | 3 | LI Xia. Prospects of MTA industry in China[J]. Ethylene Industry, 2015(2): 19: 35-37. | 4 | SHEN Xinquan, KANG Jincan, NIU Wei, et al. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7: 3598-3612. | 5 | 江甜, 刘华伟, 孔渝华. 甲醇芳构化制对二甲苯催化剂的研究进展[J]. 化工设计通讯, 2015, 41(6):5-7. | 5 | JIANG Tian, LIU Huawei, KONG Yuhua. Research progress of catalyst for paraxylene by aromatization of methanol[J]. Chemical Engineering Design Communication, 2015, 41(6): 5-7. | 6 | MICHAEL S. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous & Mesoporous Materials, 1999, 29(1/2): 3-47. | 7 | 郑月明. 催化裂解装置轻烃回炼增产丙烯和降汽油烯烃[D]. 上海: 华东理工大学, 2004. | 7 | ZHENG Yueming. Study on increasing propylene by recycling light hydrocarbon and decreasing gasoline olefin[D]. Shanghai: East China University of Science and Technology, 2004. | 8 | MA Hao, SUN Yuan, YU Junping, et al. Theoretical study on the influence of ZSM-5 zeolite with different structures for methanol to aromatics[J]. Microporous & Mesoporous Materials, 2020, 294: 109838. | 9 | BERG J P VAN DEN, WOLTHUIZEN J P, HOOFF J H C VAN. The conversion of dimethylether tohydrocarbons on zeolite HZSM-5 the reaction mechanism for formation of primary olefins[J]. Proceedings International Zeolite Conference (Naples), 1970(5): 649-660. | 10 | OLAH G A. Higher coordinate (hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons[J]. Pure & Applied Chemistry, 1971, 53(1): 201-207. | 11 | 张桂凤. b轴向[Zn, Al]HZSM-5/煤矸石多孔材料的制备及其MTA反应性能研究[D]. 徐州: 中国矿业大学, 2019. | 11 | ZHANG Guifeng. Preparation and MTA reaction performance study of b-oriented [Zn, Al]HZSM-5/coal gangue materials with multiporous[D]. Xuzhou: China University of Mining and Technology, 2019. | 12 | 邹琥, 吴巍, 葸雷, 等. 甲醇制芳烃研究进展[J]. 石油学报(石油加工). 2013, 29(3): 539-547. | 12 | ZOU Hu, WU Wei, ZI Lei, et al. Review of methanol to aromatics[J]. Journal of Petroleum (Petroleum Processing), 2013, 29(3): 539-547. | 13 | CLARKE J K A, DARCY R, HEGARTY B F, et al. Free radicals in dimethyl ether on H-ZSM-5 zeolite. A novel dimension of heterogeneous catalysis[J]. Journal of the Chemical Society Chemical Communications, 1976, 5: 425-426. | 14 | DESSUA R M, LAPIERRE R B. On the mechanism of methanol conversion to hydrocarbons over HZSM-5[J]. Journal of Catalysis, 1972, 77(1): 136-141. | 15 | 李永昕, 吴润泽, 薛冰. HMCM-22/MCM-41的制备及其在甲苯碳酸二甲酯烷基化中的催化性能[J]. 化工进展, 2010, 29(5):775-779. | 15 | LI Yongxin, WU Runze, XUE Bing. Synthesis of HMCM-22/MCM-41 and catalytic performance for toluene alkylation with dimethyl carbonate[J]. Chemical Industry and Engineering Progress, 2010, 29 (5): 775-779. | 16 | SWABB E A, GATES B C. Diffusion, reaction, and fouling in H-mordenite crystallites. The catalytic dehydration of methanol[J]. Industrial & Engineering Chemistry Fundamentals, 1972, 11(4): 540-545. | 17 | SALVADOR P, KLADNIG W. Surface reactivity of zeolites type H-Y and NaY with methanol[J]. Journal of the Chemical Society Faraday Transactions, 1977, 73: 1153-1167. | 18 | DAHL I M, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336. | 19 | DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 457-464. | 20 | DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309. | 21 | BJ?RGEN M, SVELLE S, JENSEN F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207. | 22 | 崔滕. 锌改性ZSM-5分子筛催化甲醇制芳烃[D]. 大连: 大连理工大学, 2019. | 22 | CUI Teng. Zinc-modified ZSM-5 molecular sieve catalyzed methanol to aromatics[D]. Dalian: Dalian University of Technology, 2019. | 23 | CLARENCE D C, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. | 24 | SVELLE S, JOENSEN F, NERLOV J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46): 14770. | 25 | SVELLE Stian, OLSBYE Unni, JOENSEN Finn, et al. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites:? steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. Journal of Physical Chemistry C, 2007, 111(49): 17981-17984. | 26 | 孙爱明. 甲醇催化转化制芳烃反应研究[D]. 武汉: 华中科技大学, 2011. | 26 | SUN Aiming. Study on the catalytic conversion of methanol to aromatics[D]. Wuhan: Huazhong University of Science and Technology, 2011. | 27 | DAI Weili, YANG Liu, WANG Chuanming, et al. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation[J]. ACS Catal., 2018, 8(2): 1352-1362. | 28 | UNNI Olsbye, STIAN Svelle, MORTEN Bj?rgen, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew. Chem. Int. Ed., 2012, 51: 2-24. | 29 | CUI Zhimin, LIU Qiang, BAIN Shaowei, et al. The role of methoxy groups in methanol to olefin conversion[J]. Journal of Physical Chemistry C, 2008, 112(7): 2685-2688. | 30 | LI Jinzhe, QI Yue, LIU Zhongmin, et al. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22[J]. Catalysis Letters, 2008, 121(3/4): 303-310. | 31 | LI Jinzhe, WEI Yingxu, QI Yue, et al. Conversion of methanol over H-ZSM-22: the reaction mechanism and deactivation[J]. Catalysis Today, 2011, 164(1): 288-292. | 32 | NI Youming, ZHU Wenliang, LIU Zhongmin. H-ZSM-5-catalyzed hydroacylation involved in the coupling of methanol and formaldehyde to aromatics[J]. ACS Catal., 2019, 9: 11398-11403. | 33 | NI Youming, ZHU Wenliang, LIU Zhongmin. Formaldehyde intermediate participating in the conversion of methanol to aromatics over zinc modified H-ZSM-5[J]. Journal of Energy Chemistry, 2021, 54: 174-178. | 34 | FREEMAN D, WELLS R P K, HUTCHINGS G J. Methanol to hydrocarbons: enhanced aromatic formatio using composite group 13 oxide/H-ZSM-5 catalysts[J]. Catalysis Letters, 2002, 72(3/4): 217-225. | 35 | CONTE M, LOPEZ-SANCHEZ J A, HE Q, et al. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catalysis Science & Technology, 2012, 2(1): 105-112. | 36 | 马浩. 改性ZSM-5分子筛催化甲醇制芳烃及其机理研究[D]. 北京: 中国矿业大学, 2019. | 36 | MA Hao. Study on the mechanism of methanol to aromatics on modified ZSM-5 zeolite[D]. Beijing: China University of Mining and Technology, 2019. | 37 | ZHANG Yongkun, QU Yixin, WANG Deliang, et al. Cadmium modified HZSM-5: a highly efficient catalyst for selective transformation of methanol to aromatics[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12507-12519. | 38 | NIU Xianjun, GAO Jie, MIAO Qing, et al. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous & Mesoporous Materials, 2014, 197: 252-261. | 39 | BI Yi, WANG Yingli, CHEN Xin, et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chinese Journal of Catalysis, 2014, 35(10): 1740-1751. | 40 | 杨灵志. 纳米ZSM-5分子筛的合成及甲醇芳构化性能研究[D]. 青岛: 中国石油大学(华东), 2017. | 40 | YANG Lingzhi. Study on synthesis of nano-sized ZSM-5 and catalytic performance in the methanol-to-aromatics reaction[D]. Qingdao: China University of Petroleum (East China), 2017. | 41 | NI Youming, SUN Aimin, WU Xiaoling, et al. Aromatization of methanol over La/Zn/HZSM-5 catalysts[J]. Chinese Journal of Chemical Engineering, 2011, 19(3): 439-445. | 42 | JIA Yanming, WANG Junwen, ZHANG Kan, et al. Promoted effect of zinc-nickel bimetallic oxides supported on HZSM-5 catalysis in aromatization of methanol[J]. Journal of Energy Chemistry, 2017, 26(3): 540-548. | 43 | 时一鸣, 刘丹, 陈星月, 等. 甲醇制对二甲苯联产低碳烯烃催化剂ZSM-5改性研究[J]. 煤炭转化,2020, 43(5): 1-9. | 43 | SHI Yiming, LIU Dan, CHEN Xingyue, et al. Research on modification of ZSM-5 catalyst for co-production of low-carbon olefin from methanol to p-xylene[J]. Coal Conversion, 2020,43(5): 1-9. | 44 | HSIEH Chi-Ying, CHEN Yu-Yin, LIN Yu-Chuan. Ga-substituted nanoscale HZSM-5 in methanol aromatization: the cooperative action of the Br?nsted acid and the extra-framework Ga species[J]. Ind. Eng. Chem. Res., 2018, 57: 7742-7751. | 45 | GHANBARI Bahram, ZANGENEH Fatemeh Kazemi, RIZI Zahra Taheri, et al. Highly efficient production of benzene-free aromatics from methanol over low-Si/Al-ratio alkali-modified Fe/Zn/HZSM-5[J]. ACS Omega, 2018, 3:18821-18835. | 46 | CHANG C D, JACOB S M, SILVESTRI A J, et al. Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst: US 4137440A[P]. 1979-02-06. | 47 | 骞伟中, 魏飞, 魏彤, 等. 一种连续芳构化与催化剂再生的装置及其方法: 101244969B[P]. 2007-07-20. | 47 | QIAN Weizhong, WEI Fei, WEI Tong, et al. A device and method for continuous aromatization and catalyst regeneration: 101244969B[P]. 2007-07-20. | 48 | 马慧. 改性HZSM-5分子筛的制备及催化甲醇制芳烃反应性能研究[D]. 太原: 太原理工大学, 2018. | 48 | MA Hui. Synthesis of modified HZSM-5 zeolite and their catalytic performances in aromatization of methanol[D]. Taiyuan: Taiyuan University of Technology, 2018. | 49 | 赖先熔, 黎园, 陈仕萍, 等. 甲醇制芳烃技术的发展现状[J]. 石化技术与应用, 2014, 32(1): 70-75. | 49 | LAI Xianrong, LI Yuan, CHEN Shiping, et al. Progress in methanol to aromatics technologies[J]. Petrochemical Technology and Application, 2014, 32(1): 70-75. | 50 | 钱伯章. 甲醇制芳烃技术新进展[J]. 化学工业, 2013, 31(12): 19-22. | 50 | QIAN Bozhang. Methanol to aromatics technology progress[J]. Chemical Industry, 2013, 31(12): 19-22. | 51 | CHEN Zhaohui, WANG Huiqiu, SONG Wenlong, et al. Decentralized methanol feed in a two-stage fluidized bed for process intensification of methanol to aromatics[J]. Chemical Engineering & Processing: Process Intensification, 2020, 154:108049. | 52 | 赵晨曦, 宋春敏, 阎子峰. NiO改性HZSM-5分子筛催化剂催化1-丁烯芳构化反应[J]. 石油化工, 2005, 34(10): 10-14. | 52 | ZHAO Chenxi, SONG Chunmin, YAN Zifeng. 1-Butene aromatization on NiO-modified HZSM-5 molecular sieve catalyst[J]. Petrochemical Industry, 2005, 34 (10): 10-14. | 53 | 付群. 轻烃制汽油催化剂的研究[D]. 大庆: 大庆石油学院, 2007. | 53 | FU Qun. Study on catalysts for producing gasolnie from light paraffin[D]. Daqing: Daqing Petroleum Institute, 2007. | 54 | 李丹丹. FCC废催化剂的无害化及水处理应用研究[D]. 北京: 北京化工大学, 2016. | 54 | LI Dandan. Research on harmlessness and the water treatment of waste FCC catalysts[D]. Beijing: Beijing University of Chemical Technology, 2016. | 55 | 李文怀, 张庆庚, 胡津仙, 等. 甲醇转化制芳烃工艺及催化剂和催化剂制备方法: CN 100547945C[P]. 2006-05-12. | 55 | LI Wenhuai, ZHANG Qinggeng, HU Jinxian, et al. Aromatic hydrocarbon conversion process and catalyst and catalyst preparation method:CN 100547945C[P]. 2006-05-12. | 56 | 李政杭. ZSM-5负载Zn催化剂的合成和MTA催化性能[D]. 大连: 大连理工大学, 2019. | 56 | LI Zhenghang. Synthesis and MTA performance of Zn-containing ZSM-5 catalyst[D]. Dalian: Dalian University of Technology, 2019. | 57 | CHEN Zhaohui, HOU Yilin, YANG Yifeng. et al. A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics[J]. Chemical Engineering Science, 2019,204: 1-8. | 58 | WANG Tong, TANG Xiaoping, HUANG Xiaofan, et al. Conversion of methanol to aromatics in fluidized bed reactor[J]. Catalysis Today, 2014, 233: 8-13. | 59 | CHEN Zhaohui, HOU Yilin, SONG Wenlong, et al. High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology[J]. Chemical Engineering Journal, 2019, 371: 639-646. | 60 | ZHANG Dongliang. Progress made in toluene disproportionation and alkyl transfer technology[J]. Petroleum Industry Trends, 2002, 10(4): 24-27. | 61 | 孔德金, 杨为民. 芳烃生产技术进展[J]. 化工进展, 2011, 30(1): 16-25. | 61 | KONG Dejin, YANG Weimin. Advance in technology for production of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 16-25. | 62 | 郝西维, 刘秋芳, 刘弓, 等. 对二甲苯生产技术开发进展及展望[J]. 洁净煤技术, 2016, 22(5): 25-30. | 62 | HAO Xiwei, LIU Qiufang, LIU Gong, et al. Progress and prospect of p-xylene production technologies[J]. Clean Coal Technology, 2016, 22(5): 25-30. | 63 | 吴巍. 芳烃联合装置生产技术进展及成套技术开发[J]. 石油学报(石油加工), 2015, 31(2): 271-275. | 63 | WU Wei. Advances and development of aromatics production technologies for an aromatics complex[J]. Journal of Petroleum (Petroleum Processing), 2015, 31(2): 271-275. | 64 | 田磊, 付晓晴, 刘小丽, 等. 2017年我国石油市场形势政策分析与2017年展望[J]. 中国能源, 2017, 40(1): 10-14. | 64 | TIAN Lei, FU Xiaoqing, LIU Xiaoli, et al. Policy analysis of China’s oil market situation in 2017 and outlook in 2017[J]. China Energy, 2017, 40(1):10-14. | 65 | 李昭清. 甲醇甲苯烷基化制对二甲苯联产低碳烯烃催化剂的研究[D]. 青岛: 中国石油大学(华东), 2016. | 65 | LI Zhaoqing. Study on catalyst for alkylation of toluene with methanol for preparing p-xylene and low-carbon olefin[D]. Qingdao: China University of Petroleum (East China), 2016. | 66 | LI Junhui, TONG Kai, XI Zhiwen, et al. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg-Zn-Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci. Technol., 2016, 6: 4702-4713. | 67 | 关文斌, 辛玉兵, 魏立虎, 等. 甲醇芳构化制对二甲苯的研究进展[J]. 煤化工, 2019, 47(2): 11-15. | 67 | GUAN Wenbin, XIN Yubing, WEI Lihu, et al. Research progress of methanol aromatization to produce p-xylene[J]. Coal Chemical Industry, 2019, 47(2): 11-15. | 68 | ZHANG Guiquan, ZHANG Xin, BAI Ting, et al. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization[J]. Journal of Energy Chemistry, 2015, 24(1): 107-117. | 69 | 张志智, 秦张峰, 王国富, 等. 近临界下HZSM-5催化的甲苯歧化反应[J]. 燃料化学学报, 2005, 33(1): 96-100. | 69 | ZHANG Zhizhi, QIN Zhangfeng, WANG Guofu, et al. Toluene disproportionation over HZSM-5 under near critical conditions[J]. Journal of Fuel Chemistry, 2005, 33(1): 96-100. | 70 | ROLLMANN L D, VALYOCSIK E W. Continuous-stream upflow zeolite crystallization apparatus: US4374093[P]. 1973. | 71 | ZHANG Chundong, GEUNJAE Kwaka, LEEA Yun-Jo. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability[J]. Microporous & Mesoporous Materials, 2019, 284: 316-326. | 72 | SUGI Y, KUBOTA Y, KOMURA K, et al. Shape-selective alkylation and related reactions of mononuclear aromatic hydrocarbons over H-ZSM-5 zeolites modified with lanthanum and cerium oxides[J]. Applied Catalysis A: General, 2006, 299: 157-166. | 73 | 童锴, 李军辉, 奚志文, 等. 金属氧化物和硅沉积改性ZnO/SiO2/ZSM-5的甲醇择形芳构化反应催化研究[J]. 燃料化学学报, 2015, 43(2): 221-227. | 73 | TONG Kai, LI Junhui, XI Zhiwen, et al. Study of methanol shape-selective aromatization over ZnO/SiO2/ZSM-5 modified with mental oxide and silicon deposition[J]. Journal of Fuel Chemistry, 2015, 43 (2): 221-227. | 74 | ZHANG Jingui, QIAN Weizhong, KONG Chuiyan, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2972-2977. | 75 | 张秀斌, 柳云骐, 刘晨光. 甲苯选择性歧化制取对二甲苯催化剂的制备与性能[C]// 第三届全国工业催化技术及应用年会论文集. 2006. | 75 | ZHANG Xiubin, LIU Yunqi, LIU Chenguang. Preparation and performance of catalysts for the selective disproportionation of toluene to produce p-xylene[C]//Proceedings of the 3rd National Conference on Industrial Catalysis Technology and Application. 2006. | 76 | MIYAKE K, HIROTA Y, ONO K, et al. Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5 silicalite-1 core-shell zeolite catalyst[J]. Journal of Catalysis, 2016, 342: 63-66. | 77 | HU Qingfang, HUANG Xiaofan, CUI Yu, et al. High yield production of C2-C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Advances, 2017, 7(46): 27940-27944. | 78 | PAN Donghui, SONG Xianghai, YANG Xinghui, et al. Efficient and selective conversion of methanol to para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst[J]. Applied Catalysis A: General, 2017, 557: 15-24. | 79 | LI Hui, DONG Peng, JI Dong, et al. Effect of the post-treatment of HZSM-5 on catalytic performance for methanol to aromatics[J]. Chemistry Select, 2020, 5: 3413-3419. | 80 | WANG Chuanfu, ZHANG Lei, HUANG Xin, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene[J]. Nature Communications, 2019, 10: 4348. | 81 | ZHU Xiaolin, ZHANG Jiaoyu, CHENG Ming, et al. Methanol aromatization over Mg-P-modified [Zn, Al]ZSM-5 zeolites for efficient coproduction of para-xylene and light olefins[J]. Ind. Eng. Chem. Res., 2019, 57(42): 19446-19455. | 82 | 朱倩倩. 团聚体ZSM-5分子筛催化甲苯甲醇烷基化制对二甲苯[D]. 大连: 大连理工大学, 2018. | 82 | ZHU Qianqian. Alkylation of toluene into para-xylene over aggregate ZSM-5[D]. Dalian: Dalian University of Technology, 2018. | 83 | 丁春华. 甲苯/甲醇选择烷基化催化剂的研制和催化性能研究[D]. 大连: 大连理工大学, 2007. | 83 | DING Chunhua. Preparation and catalytic properties of catalysts for shape-selective alkylation of toluene with methanol[D]. Dalian: Dalian University of Technology, 2007. | 84 | 顾道斌. 甲苯甲醇催化烷基化制对二甲苯技术研究进展[J]. 天然气化工, 2013(6): 62-66. | 84 | GU Daobin. Research advances in technologies of catalytic alkylation of toluene with methanol to para-xylene[J]. Natural Gas Chemical Industry, 2013(6): 62-66. | 85 | MAO R L V. Zeolite catalysts: US4615995[P]. 1976-10-07. | 86 | HU Qiongfang, HUANG Xiaofan, CUI Bcyu, et al. High yield production of C2-C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Adv., 2017, 7: 28940. | 87 | 许磊, 刘中民, 袁翠峪, 等. 一种甲醇/二甲醚转化制取乙烯丙烯联产对二甲苯的方法: CN101602643B[P]. 2009-12-16. | 87 | XU Lei, LIU Zhongmin, YUAN Cuiyu, et al. A method for producing ethylene/propylene co-production of p-xylene by methanol/dimethyl ether conversion: CN 101602643B[P]. 2009-12-16. | 88 | 许磊,李铭芝,刘中民,等. 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用:CN 2010101107679[P]. 2010-07-21. | 89 | XU Lei, LI Mingzhi, LIU Zhongmin, et al. A catalyst for the conversion of methanol to p-xylene and low-carbon olefins, its preparation method and application: CN 2010101107679[P]. 2010-07-21. | 90 | 梅永刚,欧书能,马跃龙,等. 一种甲醇/二甲醚制备芳烃联产丙烯的方法: CN101607757B[P]. 2009-12-23. | 90 | MEI Yonggang, Shuneng OU, MA Yuelong, et al. A method for preparing aromatic hydrocarbon co-production of propylene by methanol/dimethylether: CN 101607757B[P]. 2009-12-23. | 91 | 赵晓燕, 潘明旺, 袁金凤, 等. 联二脲的绿色合成[J]. 化工进展, 2010, 29(2): 151-154. | 91 | ZHAO Xiaoyan, PAN Mingwang, YUAN Jinfeng, et al. Green synthesis of biurea[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 151-154. | 92 | MOHAMMED Albahar, LI Chaozhou, Zholobenko VLADIMIR L, et al. The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation[J]. Microporous & Mesoporous Materials, 2020, 302: 110221. | 93 | 詹德鼎. 非临氢下HZSM-5催化剂脱噻吩性能及反应条件的研究[D]. 北京: 中国石油大学,2007. | 93 | ZHAN Deding. Study on dethiophene performance and reaction conditions of HZSM-5 catalyst under non-hydrogen conditions[D]. Beijing: China University of Petroleum,2007. | 94 | 陈学伟, 李忠. 甲醇制芳烃技术及产业发展现状[J]. 化学工程师, 2016, 30(5): 53-55, 17. | 94 | CHEN Xuewei, LI Zhong. Methanol to aromatics technology and present situation of industry development[J]. Chemical Engineer, 2016, 30(5): 53-55, 17. | 95 | 薛丽君, 张迪, 魏杰, 等. 催化剂的孔道限域效应[J]. 化学进展, 2016, 27(4): 450-457. | 95 | XUE Lijun, ZHANG Di, WEI Jie. Pore confinement effects of catalysts[J]. Progress in Chemistry, 2016, 27(4): 450-457. | 96 | 陈阳. 限域效应对于分子间相互作用力影响规律的研究及其应用[D]. 南京: 南京大学, 2014.
|
[1] |
ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling.
Research progress of non-noble metal bifunctional catalysts in zinc-air batteries
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286.
|
[2] |
SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang.
Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298.
|
[3] |
XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping.
Platinum-based catalysts for SO2 depolarized electrolysis
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309.
|
[4] |
YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao.
Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318.
|
[5] |
CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan.
Research progresses on zeolite-based CO2 adsorbents
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419.
|
[6] |
WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun.
Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497.
|
[7] |
DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying.
Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548.
|
[8] |
CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi.
Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627.
|
[9] |
WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da.
Recent advances on transition metal catalyzed carbonylation of chlorinated compounds
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666.
|
[10] |
ZHANG Qi, ZHAO Hong, RONG Junfeng.
Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691.
|
[11] |
GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu.
Research progress on the application of MOFs in photoelectrocatalysis
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705.
|
[12] |
WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie.
Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715.
|
[13] |
GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun.
Research progress of zeolite for VOCs removal
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730.
|
[14] |
XIANG Yang, HUANG Xun, WEI Zidong.
Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014.
|
[15] |
WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe.
Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|