Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 977-989.DOI: 10.16085/j.issn.1000-6613.2020-0596
• Materials science and technology • Previous Articles Next Articles
Zeqiu XIA(), Gaohong HE, Lin WANG, Xiaobin JIANG(
)
Received:
2020-04-14
Revised:
2020-05-26
Online:
2021-02-09
Published:
2021-02-05
Contact:
Xiaobin JIANG
通讯作者:
姜晓滨
作者简介:
夏泽秋(1994—),男,硕士研究生,研究方向为膜结晶过程。E-mail:基金资助:
CLC Number:
Zeqiu XIA, Gaohong HE, Lin WANG, Xiaobin JIANG. Morphology regulation of monosodium urate monohydrate crystals via fabricated uniform hydrogel slices[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 977-989.
夏泽秋, 贺高红, 王林, 姜晓滨. 均匀水凝胶片层高效调控一水合尿酸钠晶习[J]. 化工进展, 2021, 40(2): 977-989.
编号 | 单体 | 交联剂 | 交联剂浓度/% | 光引发剂 | 光引发剂浓度/% |
---|---|---|---|---|---|
1# | HEMA | PEGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
2# | AA | PEGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
3# | AA∶HEMA=1∶5 | PEGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
4# | MAA∶HEMA=1∶4 | PEGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
5# | HEMA | EGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
6# | AA | EGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
7# | AA∶HEMA=1∶5 | EGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
8# | NIPAM | PEGDA | 33① | 2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮 | 2② |
编号 | 单体 | 交联剂 | 交联剂浓度/% | 光引发剂 | 光引发剂浓度/% |
---|---|---|---|---|---|
1# | HEMA | PEGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
2# | AA | PEGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
3# | AA∶HEMA=1∶5 | PEGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
4# | MAA∶HEMA=1∶4 | PEGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
5# | HEMA | EGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
6# | AA | EGDMA | 20① | 2-羟基-2-甲基苯丙酮 | 3② |
7# | AA∶HEMA=1∶5 | EGDMA | 3② | 2-羟基-2-甲基苯丙酮 | 3② |
8# | NIPAM | PEGDA | 33① | 2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮 | 2② |
编号 | 接触角/(°) | |
---|---|---|
1# | 52 | 0.097 |
2# | 48.5 | 0.076 |
3# | 43.5 | 0.051 |
4# | 40 | 0.038 |
5# | 40.3 | 0.039 |
6# | 43.2 | 0.050 |
7# | 40.5 | 0.040 |
8# | 43.3 | 0.051 |
9# | 94.7 | 0.449 |
编号 | 接触角/(°) | |
---|---|---|
1# | 52 | 0.097 |
2# | 48.5 | 0.076 |
3# | 43.5 | 0.051 |
4# | 40 | 0.038 |
5# | 40.3 | 0.039 |
6# | 43.2 | 0.050 |
7# | 40.5 | 0.040 |
8# | 43.3 | 0.051 |
9# | 94.7 | 0.449 |
1 | LIU X, ZHOU Y, PEI C. Mimetic biomineralization matrix using bacterial cellulose hydrogel and egg white to prepare various morphologies of CaCO3[J]. CrystEngComm, 2018, 20(32): 4536-4540. |
2 | PARAMBIL J V, POORNACHARY S K, HENG J Y, et al. Template-induced nucleation for controlling crystal polymorphism: from molecular mechanisms to applications in pharmaceutical processing[J]. CrystEngComm, 2019, 21(28): 4122-4135. |
3 | CASCONE S, LAMBERTI G. Hydrogel-based commercial products for biomedical applications: a review[J]. International Journal of Pharmaceutics, 2020, 573:118803. |
4 | 刘壮, 谢锐, 巨晓洁, 等. 环境刺激响应型高强度智能水凝胶研究进展[J]. 化工进展, 2016, 35(6): 1812-1819. |
LIU Zhuang, XIE Rui, JU Xiaojie, et al. Progress in stimuli-responsive smart hydrogels with high mechanical properties[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1812-1819. | |
5 | 潘玉妹, 徐坚, 陈强, 等. 智能水凝胶在生物载药领域的研究进展[J]. 化工进展, 2016, 35(S1): 202-208. |
PAN Yumei, XU Jian, CHEN Qiang, et al. Research progress of intelligent hydrogels in biological drug carrying[J]. Chemical Industry and Engineering Progress, 2016, 35 (S1): 202-208. | |
6 | NIE J, PEI B, WANG Z, et al. Construction of ordered structure in polysaccharide hydrogel: a review[J]. Carbohydrate Polymers, 2019, 205: 225-235. |
7 | AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
8 | YANG Q, ADRUS N, TOMICKI F, et al. Composites of functional polymeric hydrogels and porous membranes[J]. Journal of Materials Chemistry, 2011, 21(9): 2783-2811. |
9 | 张敏, 李碧婵, 陈良壁. 互穿网络聚合物水凝胶的制备及其吸附研究进展[J]. 化工进展, 2015, 34(4): 1043-1049, 1087. |
ZHANG Min, LI Bichan, CHEN Liangbi. Progress in preparation of interpenetrating polymer network hydrogels and their application in adsorption[J]. Chemical Industry and Engineering Progress, 2015, 34 (4): 1043-1049, 1087. | |
10 | 龚桂胜, 刘景勃, 钟玉鹏, 等. 聚乙烯醇水凝胶自修复性能[J]. 化工进展, 2016, 35(8): 2507-2512. |
GONG Guisheng, LIU Jingbo, ZHONG Yupeng, et al. Self-healing performance of poly(vinyl alcohol) hydrogel[J]. Chemical Industry and Engineering Progress, 2016, 35 (8): 2507-2512. | |
11 | KATO K, UCHIDA E, KANG E T, et al. Polymer surface with graft chains[J]. Progress in Polymer Science, 2003, 28(2): 209-259. |
12 | BUEHLER K L, AMDERSON J L. Solvent effects on the permeability of membrane-supported gels[J]. Industrial & Engineering Chemistry Research, 2002, 41(3): 464-472. |
13 | PROFIO G D, POLINO M, NICOLETTA F P, et al. Tailored hydrogel membranes for efficient protein crystallization[J]. Advanced Functional Materials, 2013, 24(11): 1582-1590. |
14 | DI PROFIO G, SALEHI S M, CALIANDRO R, et al. Bioinspired synthesis of CaCO3 superstructures through a novel hydrogel composite membranes mineralization platform: a comprehensive view[J]. Advanced Materials, 2016, 28(4): 610-616. |
15 | GARCIA-RUIZ J, NOVELLA M, MORENO R, et al. Agarose as crystallization media for proteins Ⅰ: transport processes[J]. Journal of Crystal Growth, 2001, 232(1): 165-172. |
16 | MARTILLO M A, NAZZAL L, CRITTENDEN D B. The crystallization of monosodium urate[J]. Current Rheumatology Reports, 2014, 16(2):400. |
17 | RIDI R EL, TALLIMA H. Physiological functions and pathogenic potential of uric acid: a review[J]. Journal of Advanced Research, 2017, 8(5): 487-493. |
18 | BUSSO N, SO A. Microcrystals as DAMPs and their role in joint inflammation[J]. Rheumatology, 2012, 51(7): 1154-1160. |
19 | ODA M, SATTA Y, TAKENAKA O, et al. Loss of urate oxidase activity in hominoids and its evolutionary implications[J]. Molecular Biology and Evolution, 2002, 19(5): 640-653. |
20 | SEBESTA I. Genetic disorders resulting in hyper- or hypouricemia[J]. Advances in Chronic Kidney Disease, 2012, 19(6): 398-403. |
21 | HOWARD R G, PILLINGER M H, GYFTOPOULOS S, et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers[J]. Arthritis Care & Research, 2011, 63(10): 1456-1462. |
22 | PINEDA C, AMEZCUA-GUERRA L M, SOLANO C, et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study[J]. Arthritis Research & Therapy, 2011, 13(1): 1-7. |
23 | PUIG J, BELTRAN L, MEJIA-CHEW C, et al. Ultrasonography in the diagnosis of asymptomatic hyperuricemia and gout[J]. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35: 517-523. |
24 | CHIH M H, LEE H L, LEE T. The culprit of gout: triggering factors and formation of monosodium urate monohydrate[J]. CrystEngComm, 2016, 18(2): 290-297. |
25 | ERWIN C L, NANCOLLAS G H. The crystallization and dissolution of sodium urate[J]. Journal of Crystal Growth, 1981, 53(1): 215-223. |
26 | KIPPEN I, KLINENBERG J R, WEINBERGER A, et al. Factors affecting urate solubility in vitro[J]. Annals of the Rheumatic Diseases, 1974, 33(4): 313-317. |
27 | CHHANA A, LEE G, DALBETH N. Factors influencing the crystallization of monosodium urate: a systematic literature review[J]. BMC Musculoskeletal Disorders, 2015, 16(1): 296-296. |
28 | OYANE A, KIM H M, FURUYA T, et al. Preparation and assessment of revised simulated body fluids[J]. Journal of Biomedical Materials Research Part A, 2003, 65(2): 188-195. |
29 | JIANG X, LU D, XIAO W, et al. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution[J]. AIChE Journal, 2016, 62(3): 829-841. |
30 | JIN S, CHEN M, LI Z, et al. Design and mechanism of the formation of spherical KCl particles using cooling crystallization without additives[J]. Powder Technology, 2018, 329: 455-462. |
31 | WU S, LI K, ZHANG T, et al. Size control of atorvastatin calcium particles based on spherical agglomeration[J]. Chemical Engineering & Technology, 2015, 38(6): 1081-1087. |
32 | ZHANG H, CHEN Y, WANG J, et al. Investigation on the spherical crystallization process of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1402-1411. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[3] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[4] | ZHANG Tingting, PAN Dawei, JU Xiaojie, LIU Zhuang, XIE Rui, WANG Wei, CHU Liangyin. Fabrication and performance of Hg2+-responsive smart hydrogel grating detector [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4143-4152. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[7] | FENG Wanqi, HANISHA·Bhahti , GE Yuxuan, ZHAO Jianbo. Preparation and properties of magnetic polyaspartic acid/polyacrylamide semi-interpenetrating hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3130-3137. |
[8] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[9] | ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. |
[10] | WANG Zihang, LIANG Ruisheng, DENG Chaohe, WANG Jiayun. Preparation and atmosphere water harvesting performance of ionic gel composite adsorbent [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 389-396. |
[11] | YUE Yao, PU Mengfan, WANG Wenrui, ZHAO Jianbo, CAO Hui. Preparation and biodegradability of polyaspartic acid hydrogel [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4491-4497. |
[12] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[13] | CHANG Wei, SHI Qiulan, ZHAO Zhengyang, WANG Ruiting, WANG Zhifu, ZHAO Jianbo. Preparation and application of polyacrylamide porous hydrogel by high internal phase emulsion polymerization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3832-3839. |
[14] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[15] | CHEN Zhangxu, CHEN Bingbing, WANG Rongcai, YE Chenguang, ZHENG Bingyun. Preparation and application of β-NaYF4:Yb3+,Tm3+/g-C3N4 composite hydrogel [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3146-3154. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 577
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |