Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 550-558.DOI: 10.16085/j.issn.1000-6613.2020-0545
• Resources and environmental engineering • Previous Articles Next Articles
Si CHEN1,2(), Tengfei HU1,2, Yongbo YU1,2, Bingxin WANG1,2, Junming HONG1,2, Qian ZHANG1,2()
Received:
2020-04-08
Online:
2021-01-12
Published:
2021-01-05
Contact:
Qian ZHANG
陈思1,2(), 胡腾飞1,2, 于永波1,2, 王冰鑫1,2, 洪俊明1,2, 张倩1,2()
通讯作者:
张倩
作者简介:
陈思(1998—),女,硕士研究生,研究方向为水污染控制工程。E-mail:基金资助:
CLC Number:
Si CHEN, Tengfei HU, Yongbo YU, Bingxin WANG, Junming HONG, Qian ZHANG. Electrocatalytic degradation of organic dye methyl orange by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 550-558.
陈思, 胡腾飞, 于永波, 王冰鑫, 洪俊明, 张倩. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0545
材料 | C/% | S/% | O/% |
---|---|---|---|
GO | 45.8 | — | 46.5 |
RGN | 65.2 | — | 27.9 |
SGN | 55.8 | 11.2 | 28.6 |
材料 | C/% | S/% | O/% |
---|---|---|---|
GO | 45.8 | — | 46.5 |
RGN | 65.2 | — | 27.9 |
SGN | 55.8 | 11.2 | 28.6 |
1 | 孙大鹏. 电催化氧化处理染料工业废水的研究现状与发展前景浅析[J]. 绿色科技, 2015(4): 188-190. |
SUN Dapeng. Research status and development prospect of electrocatalytic oxidation treatment of dyestuff wastewater[J]. Journal of Green Science and Technology, 2015(4): 188-190. | |
2 | 丁绍兰, 李郑坤, 王睿. 染料废水处理技术综述[J]. 水资源保护, 2010, 26(3): 73-78. |
DING Shaolan, LI Zhengkun, WANG Rui. Summary of treatment of dyestuff wastewater[J]. Water Resources Protection, 2010, 26(3): 73-78. | |
3 | 麻晓越, 孙治荣. 电催化技术在有机化工废水处理中的研究进展[J]. 现代化工, 2018, 38(3): 42-46. |
MA Xiaoyue, SUN Zhirong. Progress of electrocatalytic technology in treating organic chemical wastewater[J]. Modern Chemical Industry, 2018, 38(3): 42-46. | |
4 | 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132. |
ZHAO Yuanyuan, WANG Dejun, ZHAO Chaocheng. Progress in electrode materials treatment by electro-catalytic for refractory wastewater oxidation[J]. Materials Reports, 2019, 33(7): 1125-1132. | |
5 | 孟雅雯. 掺杂石墨烯电极材料的制备及其电化学性能研究[D]. 兰州: 兰州理工大学, 2019. |
MENG Yawen. Synthesis and electrochemical performance of graphene and doped graphene electrode materials[D]. Lanzhou: Lanzhou University of Technology, 2019. | |
6 | 杨文耀, 张海洋, 朱如志, 等. pH值对硫掺三维石墨烯电化学性能影响的探究[J]. 电子元件与材料, 2018, 37(10): 42-48. |
YANG Wenyao, ZHANG Haiyang, ZHU Ruzhi, et al. Effect of pH value on electrochemical properties of three-dimensional sulfur-doped graphene[J]. Electronic Components and Materials, 2018, 37(10): 42-48. | |
7 | DUAN Jingjing, CHEN Sheng, JARONIEC M, et al. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes[J]. ACS Catalysis, 2015, 5: 5207-5234. |
8 | FENG Leiyu, QIN Leiyu, HUANG Yujun, et al. Boron-, sulfur-, and phosphorus-doped graphene for environmental applications[J]. Science of the Total Environment, 2020, 698: 134239. |
9 | JEON In-Yup, ZHANG Sheng, ZHANG Lipeng, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145. |
10 | 周金浩. 掺杂石墨烯的可控制备及性能研究[D]. 成都: 电子科技大学, 2018. |
ZHOU Jinhao. Controllable synthesis and properties of heteroatom-doped graphene materials[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
11 | GAO Hui, LIU Zheng, SONG Li, et al. Synthesis of S-doped graphene by liquid precursor[J]. Nanotechnology, 2012, 23(27): 275605. |
12 | 张欢欢. 氮/硫共掺杂石墨烯的制备及其氧还原催化性能研究[D]. 重庆: 西南大学, 2016. |
ZHANG Huanhuan. Synthesis of nitrogen/sulfur co-doped graphene for efficient ORR electrocatalysis[D]. Chongqing: Southwest University, 2016. | |
13 | YANG Zhi, YAO Zhen, LI Guifa, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
14 | 洪菲, 周立群, 黄莹, 等. 改进Hummers法化学合成石墨烯及其表征[J]. 化学与生物工程, 2012, 29(5): 31-33. |
HONG Fei, ZHOU Liquan, HUANG Ying, et al. Synthesis and characterization of graphene by improved hummers method[J]. Chemistry & Bioengineering, 2012, 29(5): 31-33. | |
15 | ZHANG Qian, WANG Bingxin, YU Yongbo, et al. Sulfur doped-graphene for enhanced acetaminophen degradation via electro-catalytic activation: efficiency and mechanism[J]. Science of the Total Environment, 2020, 715: 136710. |
16 | BEGUM H, AHMED M S, JEON Seungwon. δ-MnO2 nanoflowers on sulfonated graphene sheets for stable oxygen reduction and hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 296: 235-242. |
17 | MORALES-ACOSTA D, FLORES-OVERVIDES J D, RODRIGUEZ-GONZALEZ J A, et al. Comparative methods for reduction and sulfonation of graphene oxide for fuel cell electrode applications[J]. International Journal of Hydrogen Energy, 2019, 44: 12356-12364. |
18 | ALI A, KHAN Z S, JAMIL M, et al. Simultaneous reduction and sulfonation of graphene oxide for efficient hole selectivity in polymer solar cells[J]. Current Applied Physics, 2018, 18: 599-610. |
19 | FERRARI A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57. |
20 | DRESSELHAUS M S, JORIO A, HOFMANN M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. |
21 | WEI Maoping, CHAI Hui, CAO Yali, et al. Sulfonated graphene oxide as an adsorbent for removal of Pb2+ and methylene blue[J]. Journal of Colloid and Interface Science, 2018, 524: 297-305. |
22 | KANNAN A G, ZHAO Jinxing, Sung Geun JO, et al. Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2: 12232-12239. |
23 | 廖佳珍. g-C3N4/TiO2复合光催化剂的制备及可见光催化性能的研究[D]. 重庆: 重庆工商大学, 2014. |
LIAO Jiazhen. Preparation of g-C3N4/TiO2 composite photocatalyst and study on its photocatalytic activity under visible light[D]. Chongqing: Chongqing Technology and Business University, 2014. | |
24 | ZHANG Zhibin, HUANG Jian, DONG Zhimin, et al. Ultralight sulfonated graphene aerogel for efficient adsorption of uranium from aqueous solutions[J]. Radioanalytical and Nuclear Chemistry, 2019, 321: 1045-1055. |
25 | LI Jiajie, ZHANG Yumin, ZHANG Xinghong, et al. S,N dual-doped graphene like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts[J]. ASC Applied Materials & Interfaces, 2017, 9: 398-405. |
26 | LI Mingjie, LIU Chenming, ZHAO He, et al. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors[J]. Carbon, 2015, 86: 197-206. |
27 | 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. |
ZHOU Yulian, YU Yongbo, HUANG Wan, et al. Electrocatalytic degradation of organic dye RBk5 by oxide graphene[J]. China Environmental Science, 2019, 39(11): 4653-4659. | |
28 | 王冰鑫, 于永波, 黄湾, 等. 硫掺杂石墨烯电催化降解偶氮染料RBK5[J]. 化工进展, 2019, 38(12): 5471-5477. |
WANG Bingxin, YU Yongbo, HUANG Wan, et al. Electrocatalytic degradation of azo dye RBK5 by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5471-5477. | |
29 | 黄湾. 硫、氮掺杂石墨烯电极电催化降解扑热息痛的研究[D]. 厦门: 华侨大学, 2019. |
HUANG Wan. Electrocatalytic degradation of acetaminophen by sulfur and nitrogen doped graphene electrodes[D]. Xiamen: Huaqiao University, 2019. | |
30 | 郑志功, 张志刚, 陈杨青, 等. Co-La改性Ti基板阳极电催化降解废水甲基橙[J]. 福建工程学院学报, 2019, 17(1): 23-28. |
ZHENG Zhigong, ZHANG Zhigang, CHEN Yangqing, et al. Electrocatalytic degradation of methyl orange in wastewater by Co-La/Ti electrode[J]. Journal of Fujian University of Technology, 2019, 17(1): 23-28. | |
31 | 刘咏, 邹文慧, 廖洋, 等. Ce3+电催化降解甲基橙模拟废水的研究[J]. 中国稀土学报, 2010, 29(1): 105-111. |
LIU Yong, ZOU Wenhui, LIAO Yang, et al. Treatment on methyl orange containing simulation wastewater by Ce3+ ion homogenous electro-catalytic degradation process[J]. Journal of the Chinese Rare Earth Society, 2010, 29(1): 105-111. | |
32 | 陈汉林, 敖日其冷, 陈梓烽, 等. 利用碳氮共掺杂的二氧化钛纳米管阵列实现同时降解甲基橙和产氢[J]. 环境科学学报, 2015, 35(9): 2790-2797. |
CHEN Hanlin, Aoriqileng, CHEN Zifeng, et al. Concurrent photoelectrochemical reduction of H2O and oxidation of methyl orange (MO) using carbon and nitrogen codoped TiO2 nanotube arrays (C,N-TNAs)[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2790-2797. | |
33 | WU Dongling, WANG Tao, WANG Luxiang, et al. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction[J]. Microporous and Mesoporous Materials, 2019, 7: 109556. |
34 | ZHANG Qian, HUANG Wan, HONG Junming, et al. Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2[J]. Chemical Engineering Journal, 2018, 343: 662-675. |
35 | DENIS P A, FACCIO R, MOMBRU A W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. ChemPhysChem, 2009, 10(4): 715-722. |
36 | 马新龙. 掺杂多孔碳材料的制备及其电化学性能研究[D]. 北京: 中国石油大学, 2016. |
MA Xinlong. The synthesis of heteroatom-doped porous carbon materials and its application in the aspect of electrochemical performance[D]. Beijing: China University of Petroleum, 2016. | |
37 | ZHANG Lipeng, NIU Jianbing, LI Mingtao, et al. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. The Journal of Physical Chemistry C, 2014. 118(7): 3545-3553. |
38 | 张惠灵, 徐亮, 农佳莹, 等. Ti/MnO2/PbO2电极的制备及电催化降解罗丹明B[J]. 化工环保, 2008, 28(4): 300-303. |
ZHANG Huiling, XU Liang, NONG Jiaying, et al. Preparation of Ti/MnO2/PbO2 electrode and its use in electrocatalytic oxidation degradation of Rhodamine B[J]. Environmental Protection of Chemical Industry, 2008, 28(4): 300-303. | |
39 | 王苏. 电催化氧化法处理阳离子染料废水试验研究[D]. 广东: 广东工业大学, 2012. |
WANG Su. Experimental study on treating the cationic dye wastewater by electro-catalytic oxidation[D]. Guangdong: Guangdong University of Technology, 2012. | |
40 | 李春辉, 董永春. 氢氧自由基体系中偶氮染料氧化降解反应历程的探究[J]. 染料与染色, 2010, 47(5): 51-54. |
LI Chunhui, DONG Yongchun. A study on mechanism of oxidative degradation of azo dyes caused by the hydroxyl radical[J]. Dyestuffs and Coloration, 2010, 47(5): 51-54. | |
41 | 李海英, 石宝龙, 柳荣展. 染料废水内电解效率与染料结构的关系[J]. 青岛大学学报, 1999, 14(1): 21-25. |
LI Haiying, SHI Baolong, LIU Rongzhan. Relationship between the decoloration of the wastewater containing dye by internal electrolysis and the dye chemical constitutions[J]. Journal of Qingdao University, 1999, 14(1): 21-25. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |