1 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. | 2 | ? SAZ, TüRE C, TüRKER O C, et al. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J]. Environmental Science and Pollution Research, 2018, 25(9): 8777-8792. | 3 | LIU Hong, GROT S, LOGAN B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11): 4317-4320. | 4 | 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展[J]. 化工学报, 2019, 70(7): 2411-2425. | 4 | MAO Zhengzhong, SUN Yi, HUANG Zhipeng, et al. Progress of research on methanogenic microbial electrolysis cell[J]. CIESC Journal, 2019, 70(7): 2411-2425. | 5 | ZHANG Yifeng, ANGELIDAKI I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges[J]. Water Research, 2014, 56: 11-25. | 6 | 夏函青, 伍永钢, 江文亭, 等. 人工湿地-微生物燃料电池系统的发展及展望[J]. 化工进展, 2019, 38(12): 1-11. | 6 | XIA Hanqing, WU Yonggang, JIANG Wenting, et al. Review on development and prospect of constructed wetland coupled with microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 1-11. | 7 | MCCARTY P L. What is the best biological process for nitrogen removal: when and why?[J]. Environmental Science & Technology, 2018, 52(7): 3835-3841. | 8 | KURT M, DUNN J, BOURNE J R. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor[J]. Biotechnology and Bioengineering, 1987, 29(4): 493-501. | 9 | PARK H I, KIM D K, CHOI Y, et al. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor[J]. Process Biochemistry, 2005, 40(10): 3383-3388. | 10 | WANG J, SONG X, WANG Y, et al. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell[J]. Bioresource Technology, 2016, 221: 697-702. | 11 | DOHERTY L, ZHAO Yaqian, ZHAO Xiaohong, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J]. Chemical Engineering Journal, 2015, 266: 74-81. | 12 | 申瑞霞. 微生物电解池处理水热液化废水同步制氢的研究[D]. 北京: 中国农业大学, 2018. | 12 | SHEN Ruixia. Microbial electrolysis cell for treatment of post-hydrothermal liquefaction wastewater and hydrogen generation[D]. Beijing: China Agricultural University, 2018. | 13 | FANG Zhou, SONG Hailiang, CANG Ning, et al. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J]. Bioresource Technology, 2013, 144: 165-171. | 14 | 范智仁. 人工湿地-微生物燃料电池去除罗丹明B染料[D]. 西安: 长安大学, 2017. | 14 | FAN Zhiren. Enhanced removal of Rhodamine B (dye) by constructed wetland incorporating microbial fuel cell[D]. Xi’an: Chang’an University, 2017. | 15 | VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresource Technology, 2011, 102(1): 334-341. | 16 | 刘畅, 周小康, 徐霞, 等. 单室无膜微生物电解池对厕所废水的脱氮处理[J]. 环境工程学报, 2020, 14(4): 963-969. | 16 | LIU Chang, ZHOU Xiaokang, XU Xia, et al. Denitrification treatment of single-chamber membrane-free microbial electrolysis cell for toilet wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 963-969. | 17 | 顾霞, 黄珊, 陆圆, 等. 不同运行方式对多阳极型微生物燃料电池反硝化及产电性能的影响[J]. 化工进展, 2018, 37(10): 3818-3825. | 17 | GU Xia, HUANG Shan, LU Yuan, et al. Influence of different operating modes on denitrification and electricity generation in a multi-anode microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3818-3825. | 18 | 赵慧敏, 赵剑强. 不同运行方式对微生物燃料电池处理氨氮废水的影响[J]. 化工进展, 2016, 35(5): 1549-1554. | 18 | ZHAO Huimin, ZHAO Jianqiang. Influence of different operation modes on ammonia nitrogen wastewater treatment of microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1549-1554. | 19 | SENGUPTA A, DICK W A. Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing[J]. Microbial Ecology, 2015, 70(3): 853-859. | 20 | EBRAHIMI S, GABUS S, ROHRBACH-BRANDT E, et al. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20℃, 30℃, and 35℃[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1555-1568. | 21 | LU Lu, XING Defeng, REN Zhiyong. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell[J]. Bioresource Technology, 2015, 195: 115-121. | 22 | PATUREAU D, BERNET N, MOLETTA R. Effect of oxygen on denitrification in continuous chemostat culture with Comamonas sp SGLY2[J]. Journal of Industrial Microbiology, 1996, 16(2): 124-128. | 23 | 孙棋棋. 侵蚀环境中土壤微生物群落变化特征[D]. 杨陵: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018. | 23 | SUN Qiqi. Variations of soil microbial communities under erosion environment[D]. Yangling: University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment), 2018. | 24 | 张文文, 刘秉儒, 牛宋芳. 引黄灌区不同种植年限紫花苜蓿土壤养分与细菌群落特征研究[J]. 草业学报, 2019, 28(5): 46-54. | 24 | ZHANG Wenwen, LIU Bingru, NIU Songfang. Correlation between soil nutrient status and the bacterial community composition in alfalfa stands of different ages in the Yellow River irrigation area[J]. Acta Prataculturae Sinica, 2019, 28(5): 46-54. | 25 | 赵琛, 张列宇, 马涛, 等. UASB反应器对晚期渗滤液的碳氮协同削减效应[J]. 环境科学研究, 2019, 32(11): 1913-1920. | 25 | ZHAO Chen, ZHANG Lieyu, MA Tao, et al. The synergistic effect for C/N removal by UASB reactor on mature landfill leachate[J]. Research of Environmental Sciences, 2019, 32(11): 1913-1920. |
|