1 | CHENG Y, HE H J, YANG C P, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016, 34(6): 1091-1102. | 2 | BUSTER H R. Atrazine and other S-trazine herbicides in lakes and rains in Switzerland[J]. Environmental Science & Technology, 1990, 24(3): 1049-1058. | 3 | 秦传玉, 赵勇胜, 刘娜, 等. 阿特拉津在土壤中的吸附行为[J]. 环境污染与防治, 2007, 29(3): 165-167. | 3 | QIN Chuanyu, ZHAO Yongsheng, LIU Na, et al. Adsorption of atrazine in soil slurry samples[J]. Environmental Pollution & Control, 2007, 29 (3): 165-167. | 4 | BONANSEA R I, AME M V, WUNDERLIN D A. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC–MS. A case study: Suquía River basin (Argentina)[J]. Chemosphere, 2013, 90(6): 1860-1869. | 5 | 王新颖, 孙霞, 张耀斌, 等. 腐殖酸和铁对阿特拉津光降解影响的研究[J]. 环境工程学报, 2012, 6(1): 81-86. | 5 | WANG Xinying, SUN Xia, ZHANG Yaobin, et al. Effects of humic acid and iron on photodegradation of atrazine[J]. Chinese Journal of Environmental Engineering, 2012, 6 (1): 81-86. | 6 | REILLY T J, SMALLING K L, ORLANDO J L, et al. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States[J]. Chemosphere, 2012, 89(3): 228-234. | 7 | 范晓旭, 宋鸽, 宋福强, 等. 阿特拉津污染水体净化技术与降解机理[J]. 环境工程, 2015, 33(9): 10-15. | 7 | FAN Xiaoxu, SONG Ge, SONG Fuqiang, et al. Purification technology on water polluted by atrazine and its degradation mechanisms[J]. Environmental Engineering, 2015, 33 (9): 10-15. | 8 | YU J P, HE H J, YANG W L, et al. Magnetic bionanoparticles of Penicillium sp. yz11-22N2 doped with Fe3O4 and encapsulated within PVA-SA gel beads for atrazine removal[J]. Bioresource Technology, 2018, 260: 196-203. | 9 | 李长海, 贾冬梅, 张岩, 等. 芬顿法处理阿特拉津合成废水的优化试验[J]. 环境工程, 2017 (1): 55-58. | 9 | LI Changhai, JIA Dongmei, ZHANG Yan, et al. Optimization of atrazine wastewater treatment by Fenton oxidation[J]. Environmental Engineering, 2017 (1): 55-58. | 10 | ZHU C Y, YANG W L, HE H J, et al. Preparation, performances and mechanisms of magnetic Saccharomyces cerevisiae bionanocomposites for atrazine removal[J]. Chemosphere, 2018, 200: 380-387. | 11 | 蔡涛, 张璐吉, 胡六江, 等. 零价铁活化过二硫酸盐氧化降解阿特拉津[J]. 应用化学, 2013, 30(1): 114-119. | 11 | CAI Tao, ZHANG Luji, HU Liujiang, et al. Degradation of atrazine by peroxydisulfate activated with zero-valent iron [J]. Chinese Journal of Applied Chemistry, 2013, 30 (1): 114-119. | 12 | OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. | 13 | XIAO R Y, YE T T, WEI Z S, et al. Quantitative structure–activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical[J]. Environmental Science & Technology, 2015, 49(22): 13394-13402. | 14 | ANIPSITAKI G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environmental Science & Technology, 2006, 40(3): 1000-1007. | 15 | ZHOU D N, CHEN L, LI J J, et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-of-the-art minireview[J]. Chemical Engineering Journal, 2018, 346: 726-738. | 16 | JIANG B, LIU Y K, ZHENG J T, et al. Synergetic transformations of multiple pollutants driven by Cr()–sulfite reactions[J]. Environmental Science & Technology, 2015, 49(20): 12363-12371. | 17 | LIU Z Z, YANG S J, YUAN Y N, et al. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface[J]. Journal of Hazardous Materials, 2017, 324: 583-592. | 18 | XIAO Q, WANG T, YU S L, et al. Influence of UV lamp, sulfur(Ⅳ) concentration, and pH on bromate degradation in UV/sulfite systems: mechanisms and applications[J]. Water Research, 2017, 111: 288-296. | 19 | JIANG B, WANG X L, LIU Y K, et al. The roles of polycarboxylates in Cr(Ⅳ)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer[J]. Journal of Hazardous Materials, 2016, 304: 457-466. | 20 | CHEN L, PENG X Z, LIU J H, et al. Decolorization of orange Ⅱ in aqueous solution by an Fe(Ⅱ)/sulfite system: replacement of persulfate[J]. Industrial & Engineering Chemistry Research, 2012, 51(42): 13632-13638. | 21 | ZHOU D N, YUAN Y N, YANG S J, et al. Roles of oxysulfur radicals in the oxidation of acid orange 7 in the Fe(Ⅲ)–sulfite system[J]. Journal of Sulfur Chemistry, 2015, 36(4): 373-384. | 22 | ZHANG J, ZHU L, SHI Z Y, et al. Rapid removal of organic pollutants by activation sulfite with ferrate[J]. Chemosphere, 2017, 186: 576-579. | 23 | JIANG B, XIN S S, LIU Y J, et al. The role of thiocyanate in enhancing the process of sulfite reducing Cr() by inhibiting the formation of reactive oxygen species[J]. Journal of Hazardous Materials, 2018, 343: 1-9. | 24 | NETA P, HUIE R E. Free-radical chemistry of sulfite[J]. Environmental Health Perspectives, 1985, 64: 209-217. | 25 | WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron (Ⅱ) for environmental decontamination [J]. Environmental Science & Technology, 2018, 52(19): 11276-11284. | 26 | FENG M B, SHARMA V K. Enhanced oxidation of antibiotics by ferrate(Ⅵ)-sulfur(Ⅳ) system: elucidating multi-oxidant mechanism[J]. Chemical Engineering Journal, 2018, 341: 137-145. | 27 | XIE P C, GUO Y Z, CHEN Y Q, et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants[J]. Chemical Engineering Journal, 2017, 314: 240-248. | 28 | ZHANG L, CHEN L, XIAO M, et al. Enhanced decolorization of orange Ⅱ solutions by the Fe(Ⅱ)–sulfite system under xenon lamp irradiation[J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10089-10094. | 29 | JIANG Y J, GOODWILL J E, TOBIASON J E, et al. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors[J]. Water Research, 2016, 96: 114-125. | 30 | WU S H, LI H R, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353: 533-541. | 31 | HERRMANN H, REESE A, ZELLNER R. Time-resolved UV/VIS diode array absorption spectroscopy of SOx-(x=3, 4, 5) radical anions in aqueous solution[J]. Journal of Molecular Structure, 1995, 348: 183-186. | 32 | HAYON E, MCGARVEY J J. Flash photolysis in the vacuum ultraviolet region of sulfate, carbonate, and hydroxyl ions in aqueous solutions[J]. The Journal of Physical Chemistry, 1967, 71(5): 1472-1477. | 33 | YANG, JIANG J, LU X L, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49(12): 7330-7339. |
|