Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 478-488.DOI: 10.16085/j.issn.1000-6613.2019-0865
• Energy processes and technology • Previous Articles Next Articles
Yang LÜ1,Guocheng ZHU2,Fuyong HUO2,Xin DU2,Qiyu HUANG1()
Received:
2019-05-29
Online:
2020-03-12
Published:
2020-02-05
Contact:
Qiyu HUANG
通讯作者:
黄启玉
作者简介:
吕杨(1994—),男,博士研究生,研究方向为高含水易凝高黏原油低温集输粘壁机理。E-mail:lvyangcup @163.com。
基金资助:
CLC Number:
Yang LÜ,Guocheng ZHU,Fuyong HUO,Xin DU,Qiyu HUANG. Research progress on wall sticking of gelled crude oil atlow-temperature transportation[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 478-488.
吕杨,朱国承,霍富永,杜鑫,黄启玉. 不加热集油粘壁规律研究进展[J]. 化工进展, 2020, 39(2): 478-488.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0865
35 | LIU X Y, WANG D X, HAN G Y, et al. Temperature limit for oil-gas-water mixed transportation in safety during oil production with special high water-cut[J]. Acta Petrolei Sinica, 2005(3): 102-105. |
36 | JIN N D, NIE X B, WANG J, et al. Flow pattern identification of oil/water two-phase flow based on kinematic wave theory[J]. Flow Measurement and Instrumentation, 2003, 14(4/5): 177-182. |
37 | SHI J, AL-AWADI H, YEUNG H. An experimental investigation of high-viscosity oil-water flow in a horizontal pipe[J]. The Canadian Journal of Chemical Engineering, 2017, 95(12): 2423-2434. |
38 | 刘晓燕, 刘立君, 张艳, 等. 高含水后期水平集输管道内油气水流型实验及分析[J]. 工程热物理学报, 2008, 29(7): 1167-1170. |
LIU X Y, LIU L J, ZHANG Y, et al. The testing and analyses for oil-gas-water flow pattern with super-high water-cut in horizontal gathering-transporting pipeline[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1167-1170. | |
39 | PRIYANTO G S, MANSOORI A S. Measurement of property relationships of nanostructure micelles and coacervates of asphaltene in a pure solvent[J]. Chemical Engineering Science, 2001, 56: 6933-6939. |
1 | 丁振军. 高含水、高黏、易凝原油单井不加热集油的边界条件的确定[D]. 北京: 中国石油大学(北京), 2013. |
DING Z J. Determination of the boundary conditions in the single well gathering system of high water cut, highly viscous, and high-gel-point crude oil without heating[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
2 | 罗升荣, 杨建展, 季寞, 等. 大庆萨南油田不加热集油技术的实践与认识[J]. 应用能源技术, 2001(5): 3-5. |
LUO S R, YANG J Z, JI M, et al. Practice and understanding of low temperature transportation technology in Sanan oilfield, Daqing[J]. Applied Energy Technology, 2001(5): 3-5. | |
40 | 孙广宇, 张劲军. W/O型原油乳状液及其凝胶流变特性研究进展[J]. 油气储运, 2016, 35(3): 229-240. |
SUN G Y, ZHANG J J. Progress in rheological studies of W/O emulsion and its gel[J]. Oil & Gas Storage and Transportation, 2016, 35(3): 229-240. | |
3 | 刘利群, 刘春江. 长庆低渗透油田油气集输工艺技术发展综述[J]. 石油工程建设, 2008(2): 41-43, 85-86. |
LIU L Q, LIU C J. Review on development of oil and gas gathering and transportation technology in Changqing low permeability oilfield[J]. Petroleum Engineering Construction, 2008(2): 41-43, 85-86. | |
4 | 贾治渊. 高含水油田不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2017. |
JIA Z Y. Study on the boundary conditions of unheated gathering and transportation in high water cut oilfield[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
5 | 赵晓辉. 长庆油田原油不加热集输工艺分析[J]. 当代化工研究, 2016(4): 59-60. |
ZHAO X H. Analysis on the unheated gathering and transportation technology for the crude oil in Changqing oilfield[J]. Modern Chemical Research, 2016(4): 59-60. | |
6 | 岳永会, 杨玉玲, 谢海英. 喇嘛甸油田不加热集输技术研究与试验[J]. 油气田地面工程, 2005(9): 11. |
YUE Y H, YANG Y L, XIE H Y. Research and test of low-temperature transportation technology in Lamadian oilfield[J]. Oil-Gas Field Surface Engineering, 2005(9): 11. | |
7 | 乔晶鹏, 梁志武, 樊文杰, 等. 特高含水期油井常温输送新途径[J]. 石油规划设计, 2003(2): 28-30. |
QIAO J P, LIANG Z W, FAN W J, et al. A new way of transporting oil well at low temperature in the period of extra high water cut[J]. Petroleum Planning & Engineering, 2003(2): 28-30. | |
8 | 胡博仲, 李昌连, 宋承毅. 大庆高寒地区不加热集油技术回顾与展望[J]. 石油规划设计, 1995(2): 32-33, 37. |
HU B Z, LI C L, SONG C Y. Review and prospect of low-temperature transportation technology in Daqing alpine region[J]. Petroleum Planning & Engineering, 1995(2): 32-33, 37. | |
9 | 宋承毅. 论“三高”原油不加热集油的影响因素[J]. 油田地面工程, 1995(1): 9-12. |
SONG C Y. Discussion on main affecting factors of 3-high type crude unheated gathering[J]. Oil-Gas Field Surface Engineering, 1995(1): 9-12. | |
10 | 刘晓燕. 特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D]. 大庆: 大庆石油学院, 2005. |
LIU X Y. The limit confirming and hydraulic/thermodynamic calculation method research for oil-gas-water mixing transportation safe in pipeline during oil producing with supper high water cut[D]. Daqing: Daqing Petroleum Institute, 2005. | |
11 | 吴浩, 韩善鹏, 韩方勇, 等. 关于高含水原油集输温度的探讨[J]. 石油规划设计, 2018, 29(2): 14-17. |
WU H, HAN S P, HAN F Y, et al. Discussion of the gathering and transportation temperature of crude oil with high water content[J]. Petroleum Planning & Engineering, 2018, 29(2): 14-17. | |
12 | ZHENG H, HUANG Q, WANG C, et al. Wall sticking of high water cut, highly viscous and high gel-point crude oil transported at low temperatures[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(4): 20-29. |
13 | ZHENG H, HUANG Q, WANG C. Wall sticking of high water-cut crude oil transported at temperatures below the gel point[J]. Journal of Geophysics & Engineering, 2015, 12(6): 1008-1014. |
14 | 王忠民. 低温集输工艺技术研究与应用[J]. 石油工程建设, 2013, 39(5): 61-63. |
WANG Z M. Study and application of low temperature transportation process technology[J]. Petroleum Engineering Construction, 2013, 39(5): 61-63. | |
15 | SERGIO N B. Experimental study of oil/water flow with paraffin precipitation in subsea pipelines[C]//SPE. California, 2007: 11-14. |
16 | COUTO G H, CHEN H, DELLE C E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production & Operations, 2008, 23(1): 49-55. |
17 | 刘芳. 低产油田不加热集油技术研究[D]. 大庆: 大庆石油学院, 2010. |
LIU F. Technical research for unheated gathering and transporting of stripper oilfields[D]. Daqing: Daqing Petroleum Institute, 2010. | |
18 | 黄树凤, 申龙涉, 郭佳天, 等. 超稠油水膜输送减阻率与含水率的关系[J]. 油气储运, 2011, 30(2): 123-124. |
HUANG S F, SHEN L S, GUO J T, et al. The relation between water film drag reduction rate and water cut in super heavy oil transportation[J]. Oil & Gas Storage and Transportation, 2011, 30(2): 123-124. | |
19 | SANTOS R G D, MOHAMED R S, BANNWART A C, et al. Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water[J]. Journal of Petroleum Science and Engineering, 2006, 51(1/2): 9-16. |
20 | 许道振, 张劲军, 王彬, 等. 预润湿对管道润湿性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(6): 147-151. |
XU D Z, ZHANG J J, WANG B, et al. Effect of pre-wetting on pipeline wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6): 147-151. | |
21 | HAMOUDA A, DAVIDSEN S. An approach for simulation of paraffin deposition in pipelines as a function of flow characteristics with a reference to Teesside oil pipeline[J]. Petroleum, 1995, 23(5): 213-224. |
22 | 王志华. 含水原油低温集输胶凝淤积行为及治理研究[D]. 大庆: 东北石油大学, 2014. |
WANG Z H. Study on gelling deposition behavior and control of oil-water two-phase system in cooling gathering and transportation[D]. Daqing: Northeast Petroleum University, 2014. | |
23 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
24 | De OLIVEIRA M C K, CARVALHO R M, CARVALHO A B, et al. Waxy crude oil emulsion gel: impact on flow assurance[J]. Energy & Fuels, 2009, 24(4): 2287-2293. |
25 | 盛强, 王刚, 金楠, 等. 石油沥青质的微观结构分析和轻质化[J]. 化工进展, 2019, 38(3): 1147-1159. |
SHENG Q, WANG G, JIN N, et al. Petroleum asphaltene micro-structure analysis and lightening[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1147-1159. | |
26 | MULLINS O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
27 | TREJO F, ANCHEYTA J, MORGAN T, et al. Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD[J]. Energy & Fuels, 2007, 21(4): 2121-2128. |
28 | LONG J, XU Z H, MASLIYAH J H. Single molecule force spectroscopy of asphaltene aggregates[J]. Langmuir, 2007, 23(11): 6182-6190. |
29 | LU G W, LI Y F, SONG H, et al. Micromechanisrn of petroleum asphaltene aggregation[J]. Petroleum Exploration and Development, 2008, 35(1): 67-72. |
30 | PACHECO SANCHEZ J H, ZARAGOZA I P, et al. Preliminary study of the effect of pressure on asphaltene disassociation by molecular dynamics[J]. Petroleum Science and Technology, 2004, 22(7/8): 927-942. |
31 | 韩善鹏, 贾治渊, 赵芸黎, 等. 板北油田不加热集油问题研究[J]. 北京石油化工学院学报, 2018, 26(2): 56-60. |
HAN S P, JIA Z Y, ZHAO Y L, et al. Study of gathering pipelines unheated operation in Banbei oilfield[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(2): 56-60. | |
32 | 陈良, 张庆, 蒋宇.稠油不加热集输技术现状与应用探讨[J]. 天然气与石油, 2010, 28(1): 6-9. |
CHEN L, ZHANG Q, JIANG Y. Current station of unheated heavy oil gathering and transportation technology and its application[J]. Natural Gas and Oil, 2010, 28(1): 6-9. | |
33 | 敬加强, 孟江, 吕黎涛. 垦东18稠油乳化输送技术的综合评价[J]. 油气储运, 2004(5): 8-12. |
JING J Q, MENG J, LÜ L T. Comprehensive evaluation on the technology of Kendong 18 viscous crude oils transported by oil-in-water emulsion[J]. Oil & Gas Storage and Transportation, 2004(5): 8-12. | |
34 | 朱战军, 林壬子, 汪双清. 稠油主要族组分对其黏度的影响[J]. 新疆石油地质, 2004(5): 512-513. |
ZHU Z J, LIN R Z, WANG S Q. The influence of heavy oil composition on its viscosity[J]. Xinjiang Petroleum Geology, 2004(5): 512-513. | |
35 | 刘晓燕, 王德喜, 韩国有, 等. 特高含水采油期安全混输温度界限试验研究[J]. 石油学报, 2005(3): 102-105. |
41 | SINGH P, VENKATESAN R, FOGLER H S, et al. Formation and aging of incipient thin film wax-oil gels[J]. AIChE Journal, 2000, 46(5): 1059-1074. |
42 | 刘晓燕, 李友行, 李晓庆, 等. 胶凝原油颗粒变形的数值模拟研究[J]. 工程热物理学报, 2015, 36(3): 551-554. |
LIU X Y, LI Y X, LI X Q, et al. Numerical simulation study on deformation of gel crude oil particle[J]. Journal of Engineering Thermophysics, 2015, 36(3): 551-554. | |
43 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
44 | 王耀, 李宏, 郭洛方. 钢液中球状夹杂物颗粒受力情况的数值模拟[J]. 北京科技大学学报, 2013, 35(11): 1437-1442. |
WANG Y, LI H, GUO L F. Numerical simulation of the force condition of spherical inclusion particles in liquid steel[J]. Chinese Journal of Engineering, 2013, 35(11): 1437-1442. | |
45 | CHINYOKA T, RENARDY Y, RENARDY M, et al. Two-dimensional study of drop deformation under simple shear for Oldroyd B liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 130(1): 45-56. |
46 | DAVIES J T. Calculation of critical velocities to maintain solids in suspension in horizontal pipes[J]. Chemical Engineering Science, 1987, 42(7): 1667-1670. |
47 | QUAN S, SCHMID D P. Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow[J]. Physics of Fluids, 2006, 18(10): 102103. |
48 | 许卫疆, 车得福, 徐通模. 非球形颗粒的阻力系数与升力系数的数值求解[J]. 西安交通大学学报, 2006, 40(3): 298-301. |
XU W J, CHE D F, XU T M. Drag and lift forces acting on rotational nonspherical particles[J]. Journal of Xi'an Jiaotong University, 2006, 40(3): 298-301. | |
49 | 魏利平, 江国栋, 滕海鹏. 双组分黏性颗粒相间曳力模型[J]. 工程热物理学报, 2019, 40(1): 114-117. |
WEI L P, JIANG G D, TENG H P. Cohesive particle-particle drag model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 114-117. | |
50 | 张迪, 罗琦, 黄伟, 等. 基于动态模拟与比例控制的液滴曳力系数计算方法研究[J]. 核动力工程, 2015, 36(s2): 64-68. |
ZHANG D, LUO Q, HUANG W, et al. Study on calculation method for droplet drag coeffient based on dynamic simulation and P control[J]. Nuclear Power Engineering, 2015, 36(s2): 64-68. | |
51 | 赵辰辰. 单颗粒胶凝原油水力悬浮输送的数值模拟研究[D]. 大庆: 东北石油大学, 2014. |
ZHAO C C. Numerical simulation research on single suspension conveying gelled crude oil[D]. Daqing: Northeast Petroleum University, 2014. | |
52 | 李友行. 胶凝原油颗粒运动规律和变形特征的数值模拟研究[D]. 大庆: 东北石油大学, 2015. |
LI Y X. Numerical simulation study on motion law and deformation characteristics of gelled crude oil particle[D]. Daqing: Northeast Petroleum University, 2015. | |
53 | 刘晓燕, 赵辰辰, 李晓庆, 等. 油水两相间界面张力系数对胶凝原油单颗粒运动状态影响的数值模拟研究[J]. 当代化工, 2014, 43(2): 301-304. |
LIU X Y, ZHAO C C,LI X Q, et al. Numerical simulation on influence of interfacial tension coefficient of water-oil two phase flow on the gelled crude oil particle motion state[J]. Contemporary Chemical Industry, 2014, 43(2): 301-304. | |
54 | 范伟. 胶凝原油水力悬浮多相流动特性研究[D]. 大庆: 东北石油大学, 2014. |
FAN W. Study on hydraulic suspension conveying multiphase flow characteristics of gelled crude oil[D]. Daqing: Northeast Petroleum University, 2014. | |
55 | 李晓庆, 刘晓燕, 李友行. 管内单颗粒胶凝原油运动敏感性分析[J]. 工程热物理学报, 2016, 37(3): 533-538. |
LI X Q, LIU X Y, LI Y X. Motion sensitivity analysis of single gelled oil particle in a pipe[J]. Journal of Engineering Thermophysics, 2016, 37(3): 533-538. | |
56 | BUCKLEY J S, MORROW N R. An overview of crude oil adhesion phenomena[J]. Physical Chemistry of Colloids and Interfaces in Oil Production, 1992(5): 39-45. |
57 | BUCKLEY J S, LIU Y, MONSTERLEET S. Mechanisms of wetting alteration by crude oils[J]. SPE Journal, 1998, 3(1): 54-61. |
58 | 赵鹏飞, 王武昌, 李玉星. 流动体系下油基天然气水合物颗粒管壁黏附机制[J]. 油气储运, 2016, 35(5): 482-487. |
ZHAO P F, WANG W C, LI Y X. Pipe wall adhesion mechanism of natural gas hydrate particles in oil-dominated flowlines[J]. Oil & Gas Storage and Transportation, 2016, 35(5): 482-487. | |
59 | SILVA R C R, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51(1): 17-25. |
60 | VISINTIN R F G, LOCKHART T P, LAPASIN R, et al. Structure of waxy crude oil emulsion gels[J]. Journal of Non Newtonian Fluid Mechanics, 2008, 149(1): 34-39. |
61 | LI S, HUANG Q Y, HE M, et al. Effect of water fraction on rheological properties of waxy crude oil emulsions[J]. Journal of Dispersion Science and Technology, 2014, 35(8): 1114-1125. |
62 | SUN G Y, ZHANG J J, LI H Y. Structural behaviors of waxy crude oil emulsion gels[J]. Energy & Fuels, 2014, 28(6): 3718-3729. |
63 | 国丽萍, 王磊, 宋宇波. W/O 型含蜡原油乳状液屈服特性研究[J]. 科学技术与工程, 2011, 11(18): 4372-4376. |
GUO L P, WANG L, SONG Y B. Study on pour point characteristics of waxy crude water-in-oil emulsions[J]. Science Technology and Engineering, 2011, 11(18): 4372-4376. | |
64 | RØNNINGSEN H P. Production of waxy oils on the norwegian continental shelf: experiences, challenges, and practices[J]. Energy & Fuels, 2012, 26(7): 4124-4136. |
65 | TRALLERO J L, INTEVEP S A, SARICA C, et al. A study of oil water flow patterns in horizontal pipes[J]. SPE Production & Operations, 1997, 12(3): 165-172. |
66 | VIELMA M A, ATMACA S, SARICA C, et al. Characterization of oil/water flows in horizontal pipes[J]. SPE Projects Facilities & Construction, 2008, 3(4): 1-21. |
67 | OLIVEIRA R C, BORDALO S N. Experimental study of oil/water flow with paraffin precipitation in subsea pipelines[J]. PLoS One, 2007, 6(8): 685-685. |
68 | FAN K, HUANG Q, LI S, et al. The wax deposition rate of water-in-crude oil emulsions based on the laboratory flow loop experiment[J]. Journal of Dispersion Science and Technology, 2017, 38(1): 11. |
69 | BRUNO A, SARICA C, CHEN H. Paraffin deposition during the flow of water in oil and oil in water dispersions in pipes[C]// Society of Petroleum Engineers. Denver, 2008: 340-350. |
70 | SOEDARMO A A, DARABOINA N, SARICA C. Validation of wax deposition models with recent laboratory scale flow loop experimental data[J]. Journal of Petroleum Science & Engineering, 2017, 149: 351-366. |
71 | SINGH A, PANACHAROENSAWAD E, SAROCA C. A mini pilot-scale flow loop experimental study of turbulent flow wax deposition by using a natural gas condensate[J]. Energy & Fuels, 2017, 31(3): 2457-2478. |
72 | 艾广智, 李艺明, 孙青峰, 等. 用转轮流动模拟器测定气液混输管道中原油析蜡温度[J]. 油田化学, 2000(2): 181-183. |
AI G Z, LI X Y, SUN Q F, et al. Determining wax precipitation point of crude oil in flowing gas/oil two-phase mixture by using rotating wheel flow simulator[J]. Oilfield Chemistry, 2000(2): 181-183. | |
73 | 吴迪, 孙青峰, 艾广智. 用转轮流动模拟器测定集油温度下限[J]. 油气田地面工程, 1999(6): 34-35, 77. |
WU D, SUN Q F, AI G Z. Application of turning wheel flowing simulator in determination of oil-gathering temperature limits[J]. Oil-Gas Field Surface Engineering, 1999(6): 34-35, 77. | |
74 | 林森, 吴迪, 孟祥春, 等. 转轮流动模拟器在原油降凝剂评价中的应用[J]. 油气储运, 1999(11): 47-50. |
LIN S, WU D, MENG X C, et al. The application of the wheel simulator in the evaluation of crude oil pour point depressant[J]. Oil & Gas Storage and Transportation, 1999(11): 47-50. | |
75 | COUTO G H, CHEN H, DELLECASE E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production and Operations, 2008, 23(1): 49-55. |
76 | CORRERA S. Modeling wax diffusion in crude oils: the cold finger device[J]. Applied Mathematical Modelling, 2007, 31(10): 2286-2298. |
77 | ZHANG Y, GONG J, REN Y F, et al. Effect of emulsion characteristics on wax deposition from water-in-waxy crude oil emulsions under static cooling conditions[J]. Energy & Fuels,2010, 24(2): 1146-1155. |
78 | ZOUGARI M I. Novel organic solids deposition and control device for live-oils: design and applications[J]. Energy & Fuels, 2006, 20(4): 1656-1663. |
79 | ZOUGARI M I. Shear driven crude oil wax deposition evaluation[J]. Journal of Petroleum Science and Engineering, 2010, 70(1/2): 28-34. |
80 | 张莹. 常温集输高含水稠油粘壁机理研究[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Y. Study on the sticking wall mechanism of high water-cut heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
81 | 黄启玉, 毕权, 李男. 油水两相流蜡沉积研究进展[J]. 化工进展, 2016, 35(s1): 69-74. |
HUANG Q Y, BI Q, LI N. Research progress of wax deposition in oil-water two-phase flow[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 69-74. | |
82 | 檀为建, 崔艳丽, 李娇, 等. 西柳站高含水油井常温集输温度界限试验研究[J]. 油气田地面工程, 2018, 37(6): 19-25. |
TAN W J, CUI Y L, LI J, et al. Experimental study on temperature limits of normal- temperature gathering and transportation in high water-cut oil wells of Xiliu station[J]. Oil-Gas Field Surface Engineering, 2018, 37(6): 19-25. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[3] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[4] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[5] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[6] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[7] | QIAO Xu, ZHANG Zhuxiu. Consideration and exploration of the development path for inherent safety of chemical engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3319-3324. |
[8] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[9] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[10] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[13] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[14] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[15] | DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |