Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 5040-5047.DOI: 10.16085/j.issn.1000-6613.2019-0355
• Materials science and technology • Previous Articles Next Articles
Xiangzhi DONG1,2(),Yong MA1,Chunping HOU1,Baoliang ZHANG1,Hepeng ZHANG1,Qiuyu ZHANG1()
Received:
2019-03-11
Online:
2019-11-05
Published:
2019-11-05
Contact:
Qiuyu ZHANG
董祥芝1,2(),马勇1,侯春平1,张宝亮1,张和鹏1,张秋禹1()
通讯作者:
张秋禹
作者简介:
董祥芝(1984—),女,硕士研究生,研究方向为蛋白质分子印迹材料的合成。E-mail: 基金资助:
CLC Number:
Xiangzhi DONG,Yong MA,Chunping HOU,Baoliang ZHANG,Hepeng ZHANG,Qiuyu ZHANG. Thermo- and pH dual-responsive protein imprinted polymers for recognition of bovine serum albumin[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5040-5047.
董祥芝,马勇,侯春平,张宝亮,张和鹏,张秋禹. 用于蛋白质BSA识别的温度/pH双敏印迹聚合物[J]. 化工进展, 2019, 38(11): 5040-5047.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0355
聚合物 | K/mL·mg-1 | Qmax/mg·g-1 | 相关系数R |
---|---|---|---|
MIP | 16.91 | 89.03 | 0.9969 |
NIP | 5.51 | 53.43 | 0.9825 |
聚合物 | K/mL·mg-1 | Qmax/mg·g-1 | 相关系数R |
---|---|---|---|
MIP | 16.91 | 89.03 | 0.9969 |
NIP | 5.51 | 53.43 | 0.9825 |
蛋白质 种类 | 紫外吸收波长/nm | 分子量 | 等电点(PI) | 印迹因子(IF) | 选择因子(β) |
---|---|---|---|---|---|
BSA | 278 | 66000 | 4.9 | 2.02 | — |
BHb | 405 | 68000 | 6.8 | 1.08 | 1.82 |
HSA | 277 | 66000 | 4.7~4.9 | 1.25 | 1.58 |
OVA | 277 | 43000 | 4.7 | 1.18 | 1.67 |
Lyz | 280.5 | 14300 | 11 | 1.16 | 1.70 |
蛋白质 种类 | 紫外吸收波长/nm | 分子量 | 等电点(PI) | 印迹因子(IF) | 选择因子(β) |
---|---|---|---|---|---|
BSA | 278 | 66000 | 4.9 | 2.02 | — |
BHb | 405 | 68000 | 6.8 | 1.08 | 1.82 |
HSA | 277 | 66000 | 4.7~4.9 | 1.25 | 1.58 |
OVA | 277 | 43000 | 4.7 | 1.18 | 1.67 |
Lyz | 280.5 | 14300 | 11 | 1.16 | 1.70 |
1 | VLATAKISG, ANDERSSONL I, MULLERR, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature,1993, 361(6413): 645-647. |
2 | WULFFG. Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies[J]. Angewandte Chemie: International Edition, 1995, 34(17): 1812-1832. |
3 | LUH Z, XUS F. Hollow mesoporous structured molecularly imprinted polymers for highly sensitive and selective detection of estrogens from food samples[J]. Journal of Chromatography A, 2017, 1501: 10-17. |
4 | VIVEIROSR, KARIMK, PILETSKYS A, et al. Development of a molecularly imprinted polymer for a pharmaceutical impurity in supercritical CO2: rational design using computational approach[J]. Journal of Cleaner Production, 2017, 168: 1025-1031. |
5 | WHITCOMBEM J, CHIANELLAI, LARCOMBEL, et al. The rational development of molecularly imprinted polymer-based sensors for protein detection[J], Chemical Society Reviews, 2011, 40(3): 1547-1571. |
6 | ANIRUDHANT S, ALEXANDERS. A potentiometric sensor for the trace level determination of hemoglobin in real samples using multiwalled carbon nanotube based molecular imprinted polymer[J]. European Polymer Journal, 2017, 97: 84-93. |
7 | HANSEND F. Recent developments in the molecular imprinting of proteins[J]. Biomaterials, 2007, 28(29): 4178-4191. |
8 | LVY Q, TANT W,SVECF. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules[J]. Biotechnology Advances, 2013, 31(8): 1172-1186. |
9 | MAX T, HEX W, LIW Y, et al. Epitope molecularly imprinted polymer coated quartz crystal microbalance sensor for the determination of human serum albumin[J]. Sensors and Actuators B: Chemical, 2017, 246: 879-886. |
10 | LID Y, HEX W, CHENY, et al. Novel hybrid structure silica/CdTe/molecularly imprinted polymer: synthesis, specific recognition, and quantitative fluorescence detection of bovine hemoglobin[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12609-12616. |
11 | GAOR X, MUX R, HAOY, et al. Combination of surface imprinting and immobilized template techniques for preparation of core-shell molecularly imprinted polymers based on directly amino-modified Fe3O4 nanoparticles for specific recognition of bovine hemoglobin[J]. Journal of Materials Chemistry B, 2014, 2(12): 1733-1741. |
12 | 郭天瑛, 夏永清, 郝广杰, 等. 蛋白质分子印迹技术的研究进展[J]. 化工进展, 2003, 22(7): 713-716. |
GUOT Y, XIAY Q, HAOG J, et al. Progress in the study on proteins imprinted technique[J]. Chemical Industry and Engineering Progress, 2003, 22(7): 713-716. | |
13 | 徐菲菲, 段玉清, 张海晖, 等. 表面分子印迹聚合物载体研究新进展[J]. 化工进展, 2011, 30(5): 1033-1038. |
XUF F, DUANY Q, ZHANGH H, et al. Advance in surface molecularly imprinted carriers[J]. Chemical Industry and Engineering Progress, 2011, 30(5): 1033-1038. | |
14 | WANGY F, ZHOUJ J, ZHANGB L, et al. Fabrication and characterization of glutathione-imprinted polymers on fibrous SiO2 microspheres with high specific surface[J]. Chemical Engineering Journal, 2017, 327: 932-940. |
15 | LIUM M, PIJ Y, WANGX J, et al. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes[J]. Analytica Chimica Acta, 2016, 932: 29-40. |
16 | LINJ T, LIUZ K, ZHUQ L, et al. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2017, 155: 41-50. |
17 | SEDGHIR, YASSARIM, HEIDARIB. Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: synthesis, characterization and adsorption properties for curcumin[J]. Colloids and Surfaces B: Biointerfaces, 2018, 162: 154-162. |
18 | LIX J, ZHANGB L, LIW, et al. Preparation and characterization of bovine serum albumin surface imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition[J]. Biosensors & Bioelectronics, 2014, 51: 261-267. |
19 | LID Y, ZHANGX M, YANY J, et al. Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach[J]. Biosensors & Bioelectronics, 2016, 9: 187-192. |
20 | 杨紫淳, 高云玲, 姚克俭. 温敏型分子印迹水凝胶的研究进展[J]. 化工进展, 2014, 33 (1): 117-123. |
YANGZ C, GAOY L, YAOK J. Temperature-sensitive molecularly imprinted hydrogels[J]. Chemical Industry and Engineering Progress, 2014, 33 (1): 117-123. | |
21 | 许龙, 黄运安, 朱秋劲, 等. 基于壳聚糖的分子印迹聚合物的制备和应用[J]. 化工进展, 2016, 35 (3): 847-855. |
XUL, HUANGY A, ZHUQ J, et al. Preparation and application of molecularly imprinted polymers based on chitosan[J]. Chemical Industry and Engineering Progress, 2016, 35 (3): 847-855. | |
22 | SHIQ H, TIANY, DONGX Y, et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption[J]. Biochemical Engineering Journal, 2003, 16(3): 317-322. |
23 | YUANQ, SHAHJ, HEINS, et al. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier[J]. Acta Biomaterialia, 2010, 6(3): 1140-1148. |
24 | DENGZ W, ZHENZ P, HUX X, et al. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy[J]. Biomaterials, 2011, 32(21): 4976-4986. |
25 | LIC X, MAY, NIUH, et al. Hydrophilic hollow molecularly imprinted polymer microparticles with photo- and thermoresponsive template binding and release properties in aqueous media[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27340-27350. |
26 | DEMIRELG, ÖZÇETING, TURANE, et al. pH/Temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/ maleic acid) hydrogels for bovine serum albumin[J]. Macromolecular Bioscience, 2005, 5(11): 1032-1037. |
27 | WANGX L, YAOH F, LIX Y, et al. pH/Temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization[J]. RSC Advance, 2016, 6(96): 94038-94047. |
28 | GAOF X, ZHAOX L, HEX W, et al. A pH and temperature dual-responsive macroporous molecularly imprinted cryogel for enhanced recognition capability towards ovalbumin[J]. Analytical Methods, 2013, 5(23): 6700-6708. |
29 | DONGX Z, MAY, HOUC P, et al. Preparation of pH and temperature dual-sensitive molecularly imprinted polymers based on chitosan and N-isopropylacrylamide for recognition of bovine serum albumin[J]. Polymer International, 2019, 68(5): 955-963. |
30 | 乔娟, 齐莉. 刺激-响应型蛋白质分子印迹材料的研究进展[J]. 科学通报, 2019, 64(13): 1330-1339. |
QIAOJ, QIL. Progress of stimuli-responsive molecular imprinted materials for capture/release of proteins (in Chinese)[J]. Chin. Sci. Bull., 2019, 64(13): 1330-1339. | |
31 | STŐBERW, FINKA, BOHNE. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69. |
32 | BOURGEAT-LAMIE, LANGJ. Encapsulation of inorganic particles by dispersion polymerization in polar media: 1. Silica nanoparticles encapsulated by polystyrene[J]. Journal of Colloid and Interface Science, 1998,197(2): 293-308. |
33 | CHENK M, WANGS Y, LIL, et al. Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry[J]. Biomacromolecules, 2013, 14(3): 818-827. |
34 | 倪永年, 葛成相. 多元校正分光光度法同时测定兔血清内的氨甲苯酸和酚磺乙胺[J]. 分析科学学报, 2006, 22(6): 683-686. |
NIY N, GEC X. Simultaneous spectrophotometric determination of aminomethylbenzoic acid and etamsylate in rabbit serum using multivariate calibration methods[J]. Journal of Analytical Science, 2006, 22(6): 683-686. |
[1] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[2] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[3] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[4] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[5] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[6] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[7] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[8] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[9] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[10] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[11] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[12] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | WANG Lin, XIN Meihua, LI Mingchun, CHEN Qi, MAO Yangfan. Preparation of quaternized/sulfonated chitosan and its anti-biofilm activity [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2577-2585. |
[15] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |