Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4941-4948.DOI: 10.16085/j.issn.1000-6613.2019-0195
• Industrial catalysis • Previous Articles Next Articles
Yuansong ZHOU(),Fengyu GAO,Xiaolong TANG(),Honghong YI,Jingxuan MENG
Received:
2018-12-30
Online:
2019-11-05
Published:
2019-11-05
Contact:
Xiaolong TANG
通讯作者:
唐晓龙
作者简介:
周远松(1985—),男,硕士,工程师,研究方向为大气污染控制。E-mail:基金资助:
CLC Number:
Yuansong ZHOU,Fengyu GAO,Xiaolong TANG,Honghong YI,Jingxuan MENG. Research progress on NO reduction by CO over metal oxide catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4941-4948.
周远松,高凤雨,唐晓龙,易红宏,孟婧轩. 金属氧化物催化CO还原NO的研究进展[J]. 化工进展, 2019, 38(11): 4941-4948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0195
催化剂 | 反应条件 | 反应 温度/℃ | NO 转化率/% | CO 转化率/% | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|
NO/% | CO/% | O2/% | SO2/μg?g-1 | H2O/% | |||||
Fe-Ba/ZSM-5 | 0.1 | 0.2 | 0 | 0 | 0 | 325 | 100 | — | [ |
Fe0.8Co0.2/ASC | 0.1 | 0.2 | 0 | 0 | 0 | 200 | 100 | — | [ |
Ce0.67Sn0.33O2 | 5 | 10 | 0 | 0 | 0 | 325 | 70 | — | [ |
Cu0.1La0.1Ce0.8O | 5 | 10 | 0 | 0 | 10 | 250 | 90 | 42 | [ |
Rh0.05Co2.95O4 | 5 | 5 | 2.5 | 0 | 2 | 250 | 80 | — | [ |
Co2.9Cu0.1O4 | 5 | 5 | 2.5 | 0 | 2.5 | 200 | 70 | — | [ |
Ag0.3Co2.7O4 | 5 | 5 | 2.5 | 0 | 2.5 | 120 | 90 | — | [ |
Cu/CeMn-10∶1 | 5 | 5 | 0 | 0 | 0 | 225 | 98 | 48 | [ |
Cu/TC-60∶1 | 5 | 10 | 0 | 0 | 0 | 300 | 99 | 53 | [ |
CuO/CeO2/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 350 | 100 | — | [ |
CuO-V2O5/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 350 | 100 | — | [ |
CuO/NixOy/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 200 | 90 | — | [ |
催化剂 | 反应条件 | 反应 温度/℃ | NO 转化率/% | CO 转化率/% | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|
NO/% | CO/% | O2/% | SO2/μg?g-1 | H2O/% | |||||
Fe-Ba/ZSM-5 | 0.1 | 0.2 | 0 | 0 | 0 | 325 | 100 | — | [ |
Fe0.8Co0.2/ASC | 0.1 | 0.2 | 0 | 0 | 0 | 200 | 100 | — | [ |
Ce0.67Sn0.33O2 | 5 | 10 | 0 | 0 | 0 | 325 | 70 | — | [ |
Cu0.1La0.1Ce0.8O | 5 | 10 | 0 | 0 | 10 | 250 | 90 | 42 | [ |
Rh0.05Co2.95O4 | 5 | 5 | 2.5 | 0 | 2 | 250 | 80 | — | [ |
Co2.9Cu0.1O4 | 5 | 5 | 2.5 | 0 | 2.5 | 200 | 70 | — | [ |
Ag0.3Co2.7O4 | 5 | 5 | 2.5 | 0 | 2.5 | 120 | 90 | — | [ |
Cu/CeMn-10∶1 | 5 | 5 | 0 | 0 | 0 | 225 | 98 | 48 | [ |
Cu/TC-60∶1 | 5 | 10 | 0 | 0 | 0 | 300 | 99 | 53 | [ |
CuO/CeO2/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 350 | 100 | — | [ |
CuO-V2O5/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 350 | 100 | — | [ |
CuO/NixOy/γ-Al2O3 | 5 | 10 | 0 | 0 | 0 | 200 | 90 | — | [ |
1 | YAOXiaojiang, TANGChangjin, GAOFei, et al. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts[J]. Catalysis Science & Technology, 2014, 4(9): 2814-2829. |
2 | SKALSKAK, MILLERJ S, LEDAKOWICZS. Trends in NOx abatement: a review[J]. Science of the Total Environment, 2010, 408(19): 3976-3989. |
3 | ROY S, HEGDEM S, MADRASG. Catalysis for NOx abatement[J]. Applied Energy, 2009, 86(11): 2283-2297. |
4 | TWIGGM V. Progress and future challenges in controlling automotive exhaust gas emissions[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 2-15. |
5 | WANGLuyuan, CHENGXingxing, WANGZhiqiang, et al. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO[J]. Applied Catalysis B:Environmental, 2017, 201: 636-651. |
6 | CHENGX X, BIX T. A review of recent advances in selective catalytic NOx reduction reactor technologies[J]. Particuology, 2014, 16: 1-18. |
7 | IsabellaNOVA, CristianCIARDELLI, EnricoTRONCONI, et al. NH3-SCR of NO over a V-based catalyst: low-T redox kinetics with NH3 inhibition[J]. AIChE Journal, 2006, 52(9): 3222-3233. |
8 | CHENGX X, BIX T. Reaction kinetics of selective catalytic reduction of NOx by propylene over Fe/ZSM-5[J]. Chemical Engineering Journal, 2012, 211: 453-462. |
9 | YANGT T, BIH T, CHENGX X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 163-171. |
10 | CHENGX X, BIX T. Modeling NOx adsorption onto Fe/ZSM-5 catalysts in a eixed bed reactor[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1):19-30. |
11 | LIULianjun, YAOZhijian, LIUBin, et al. Correlation of structural characteristics with catalytic performance of CuO/CexZr1-xO2 catalysts for NO reduction by CO[J]. Journal of Catalysis, 2010, 275(1): 45-60. |
12 | ILIOPOULOUE F, EFTHIMIADISE A, NALBANDIANL, et al. Ir-based additives for NO reduction and CO oxidation in the FCC regenerator: evaluation, characterization and mechanistic studies[J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 277-288. |
13 | SUNChuanzhi, TANGYingjie, GAOFei, et al. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO[J]. Physical Chemistry Chemical Physics, 2015, 17(24): 15996-16006. |
14 | KACIMIM, ZIYADM, LIOTTAL F. Cu on amorphous AlPO4: preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen[J]. Catalysis Today, 2015, 241: 151-158. |
15 | YAOXiaojiang, XIONGYan, ZOUWeixin, et al. Correlation between the physicochemical properties and catalytic performances of CexSn1-xO2 mixed oxides for NO reduction by CO[J]. Applied Catalysis B: Environmental, 2014, 144: 152-165. |
16 | YAOXiaojiang, TANGChangjin, JIZeyang, et al. Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO[J]. Catalysis Science & Technology, 2013, 3(3): 688-698. |
17 | YUQiang, YAOXiaojiang, ZHANGHongliang, et al. Effect of ZrO2 addition method on the activity of Al2O3-supported CuO for NO reduction with CO: impregnation vs. coprecipitation[J]. Applied Catalysis A: General, 2012, 423: 42-51. |
18 | 孟婧轩, 高凤雨, 唐晓龙, 等. Ir基催化剂用于CO选择性催化还原 NO的研究进展[J]. 化工进展, 2019, 38(6): 2746-2755. |
MENGJingxuan, GAOFengyu, TANGXiaolong, et al. Review of Ir-based catalyst in selective catalytic reduction of NO with CO[J] Chemistry Industry and Engineering Progress, 2019, 38(6): 2746-2755. | |
19 | CHAFIKT, KONDARIDESD I, VERYKIOSX E. Catalytic reduction of NO by CO over rhodium catalysts 1. Adsorption and displacement characteristics investigated by insitu FTIR and transient-MS techniques[J]. Journal of Catalysis, 2000, 190(2): 446-459. |
20 | ZHANGXingyu, MAChunyuan, CHENGXingxing, et al. Performance of Fe-Ba/ZSM-5 catalysts in NO+O2 adsorption and NO+CO reduction[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7077-7088. |
21 | LIUTangkang, QIANJunning, YAOYanyan, et al. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: effect of the grinding[J]. Molecular Catalysis, 2017, 430: 43-53. |
22 | SALKERA V, DESAIM S F. Catalytic activity and mechanistic approach of NO reduction by CO over M0.05Co2.95O4 (M = Rh, Pd & Ru) spinel system[J]. Applied Surface Science, 2016, 389: 344-353. |
23 | SALKERA V, DESAIM S F. CO-NO/O2 redox reactions over Cu substituted cobalt oxide spinels[J]. Catalysis Communications, 2016, 87: 116-119. |
24 | SALKERA V, DESAIM S F. Low-temperature nitric oxide reduction over silver-substituted spinels cobalt oxide [J]. Catalysis Science & Technology, 2016, 6(2): 430-433. |
25 | DENGChangshun, HUANGQingqing, ZHUXiying, et al. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO+CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. |
26 | DENGChangshun, LIBin, DONGLihui, et al. NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2[J]. Physical Chemistry Chemical Physics, 2015, 17(24): 16092-16109. |
27 | GEChengyan, LIULichen, LIUZhuotong, et al. Improving the dispersion of CeO2 on gamma-Al2O3 to enhance the catalytic performances of CuO/CeO2/gamma-Al2O3 catalysts for NO removal by CO[J]. Catalysis Communications, 2014, 51: 95-99. |
28 | XIONGYan, YAOXiaojiang, TANGChangjin, et al. Effect of CO-pretreatment on the CuO-V2O5/gamma-Al2O3 catalyst for NO reduction by CO[J]. Catalysis Science & Technology, 2014, 4(12): 4416-4425. |
29 | GEChengyan, LIULianjun, YAOXiaojiang, et al. Treatment induced remarkable enhancement of low-temperature activity and selectivity of copper-based catalysts for NO reduction[J]. Catalysis Science & Technology, 2013, 3(6): 1547-1557. |
30 | DONGLihui, ZHANGBing, TANGChangjin, et al. Influence of CeO2 modification on the properties of Fe2O3-Ti0.5Sn0.5O2 catalyst for NO reduction by CO[J]. Catalysis Science & Technology, 2014, 4(2): 482-493. |
31 | LUOMengfei, CHENJun, CHENLinshen, et al. Structure and redox properties of CexTi1-xO2 solid solution[J]. Chemistry of Materials, 2001, 13(1): 197-202. |
32 | BAIDYAT, GUPTAA, DESHPANDEYP A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-delta[J]. Journal of Physical Chemistry C, 2009, 113(10): 4059-4068. |
33 | NGUYENT B, DELOUMEJ P, PERRICHONV. Study of the redox behaviour of high surface area CeO2-SnO2 solid solutions[J]. Applied Catalysis A: General, 2003, 249(2): 273-284. |
34 | LIUTangkang, QIANJunning, YAOYangyan, et al. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: effect of the grinding[J]. Molecular Catalysis, 2017, 430: 43-53. |
35 | DAIXiaoxia, JIANGWeiyu, WANGWanglong, et al. Supercritical water syntheses of transition metal-doped CeO2 nano-catalysts for selective catalytic reduction of NO by CO: an in situ diffuse reflectance fourier transform infrared spectroscopy study[J]. Chinese Journal of Catalysis, 2018, 39(4): 728-735. |
36 | 郭磊, 张涛, 常化振, 等. Ce掺杂改性Ni-Al-Ox催化剂CO-NO反应性能[J]. 中国环境科学, 2018, 38(9): 3313-3321. |
GUOLei, ZHANGTao, CHANGHuazhen, et al. Study on Ce-doped Ni-Al-Ox catalysts for reduction by CO[J]. China Environmenal Science, 2018, 38(9): 3313-3321. | |
37 | SONGW Q, POYRAZA S, MENGY T, et al. Mesoporous Co3O4 with controlled porosity: inverse micelle synthesis and high-performance catalytic CO oxidation at-60 degrees C[J]. Chemistry of Materials, 2014, 26(15): 4629-4639. |
38 | WANGLei, ZHANGShiran, ZHUYuan, et al. Catalysis and in situ studies of Rh-1/Co3O4 nanorods in reduction of NO with H-2[J]. ACS Catalysis, 2013, 3(5): 1011-1019. |
39 | ZHOUMinjie, CAILili, MichalBAJDICH, et al. Enhancing catalytic CO oxidation over Co3O4 nanowires by substituting Co2+ with Cu2+[J]. ACS Catalysis, 2015, 5(8): 4485-4491. |
40 | SamiBARKAOUI, HassounaDHAOUADI, SalahKOUASS, et al. Structural and optical proprieties of doped cobalt oxide: CuxCO3-xO4 (x=0.0; 0.1; 0.2; 0.4; and 0.6)[J]. Optik, 2015, 126(9/10): 1047-1051. |
41 | NICKOLOVR, STANKOVAN, KHRISTOVAM, et al. Copper oxide supported on carbon modified alumina as catalyst for reduction of NO with CO[J]. Journal of Colloid and Interface Science, 2003, 265(1): 121-128. |
42 | KHRISTOVAM, IVANOVB, SPASSOVAI, et al. NO reduction with CO on copper and ceria oxides supported on alumina[J]. Catalysis Letters, 2007, 119(1/2): 79-86. |
43 | WANHaiqin, LIDan, DAIYue, et al. Catalytic behaviors of CuO supported on Mn2O3 modified gamma-Al2O3 for NO reduction by CO[J]. Journal of Molecular Catalysis A: Chemical, 2010, 332(1/2): 32-44. |
44 | CHENGXingxing, ZHANGXingyu, SUDexin, et al. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: catalyst design and activity test[J]. Applied Catalysis B:Environmental, 2018, 239: 485-501. |
45 | 孔令朋, 苗杰, 李明航, 等. CuMnCeLa-O/γ-Al2O3催化剂助燃脱硝性能研究[J]. 分子催化, 2018, 32(4): 295-304. |
KONGLingpeng, MIAOJie, LIMinghang, et al. Performances of selective catalytic reduction of NO with CO over CuMnCeLa-O/γ-Al2O3 catalyst[J]. Journal of Molecular Catalysis, 2018, 32(4): 295-304. | |
46 | WENBin, HEMingyuan, EthanSCHRUM, et al. NO reduction and CO oxidation over Cu/Ce/Mg/Al mixed oxide catalyst in FCC operation[J]. Journal of Molecular Catalysis A:Chemical, 2002, 180(1/2): 187-192. |
47 | LIJun, WANGShan, ZHOULi, et al. NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions[J]. Chemical Engineering Journal, 2014, 255: 126-133. |
48 | ZahraGHOLAMI, LUOGuohua. Low-temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu∶Ce catalysts supported by multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2018, 57(27): 8871-8883. |
49 | SREEKANTHP M, SMIRNIOTISP G. Selective reduction of NO with CO over titania supported transition metal oxide catalysts[J]. Catalysis Letters, 2008, 122(1/2): 37-42. |
50 | BONINGARIT, PAVANIS M, ETTIREDDYP R, et al. Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures[J]. Molecular Catalysis, 2018, 451: 33-42. |
51 | 付玉秀, 仲雪梅, 常化振, 等. 铈钴复合氧化物催化剂催化CO-SCR反应机理研究 [J]. 中国环境科学, 2018, 38(8): 2934-2940. |
FUYuxiu, ZHONGXuemei, CHANGHuazhen, et al. Mechanism study on CO-SCR over Ce-Co-Ox mixed oxides catalysts[J]. China Enverimantal Science, 2018, 38(8): 2934-2940. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |