Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3355-3364.DOI: 10.16085/j.issn.1000-6613.2018-2292
• Fine chemicals • Previous Articles Next Articles
Jianbo ZHAO1,2(),Jun WEI1,Hui CAO1(),Tianwei TAN1
Received:
2018-11-26
Online:
2019-07-05
Published:
2019-07-05
Contact:
Hui CAO
通讯作者:
曹辉
作者简介:
赵俭波(1982—),男,博士研究生,副教授,研究方向为生物质材料的制备及高值化利用。E-mail:<email>lain_1982@163.com</email>。
基金资助:
CLC Number:
Jianbo ZHAO, Jun WEI, Hui CAO, Tianwei TAN. The research and application progress of PASP hydrogel[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3355-3364.
赵俭波, 魏军, 曹辉, 谭天伟. 聚天冬氨酸水凝胶的研究与应用进展[J]. 化工进展, 2019, 38(07): 3355-3364.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2292
合成方法 | 合成过程 | 优势 | 不足之处 |
---|---|---|---|
高能辐射交联 | |||
γ射线辐射交联 | 先由 PSI 水解得到线状 PSAP;再将线状 PSAP 溶解到水中,用γ射线辐射交联而最终得到交联 PSAP | 纯度高,吸水倍率高 | 不易大规模生产,且成本高、易产生放射性污染 |
紫外光辐射交联 | 以GMA、AMA或丙烯酰氯对PHEA或PSI接枝制备带双键衍生物,并暴露于紫外线光源处制得水凝胶 | 无需加热,反应速度快 | 需引入光敏基团,工艺复杂,且聚合过程中δ键易断裂 |
互补基团化学交联 | |||
PSI出发 | |||
先交联再水解 | 先在有机相中以二氨化合物为交联剂使 PSI 交联;再使交联 PSI 在碱性水溶液中水解得到交联 PSAP | 均相反应,交联度高 | 交联过程中使用了有机溶剂如 DMF、DMSO 等,容易产生环境问题 |
交联水解同时进行 | 在碱性水溶液中,并有交联剂存在下,将 PSI 一步交联、水解,得到水凝胶 | 工艺过程步骤少,不使用有机溶剂,环境污染小,成本较低 | 反应均一性较差,交联程度较低 |
先水解再交联 | 先在碱性条件下将PSI水解得线状PASP;再用环氧类交联剂交联得PASP水凝胶 | 均一性好,产物交联度高,不使用有机溶剂,工艺简单, 成本较低 | 主链上酰胺键易断裂,脆性较大 |
PASP衍生物出发 | 先采用羟基、氨基、巯基、烷氧基等活性基团对PSI改性开环制备PASP衍生物,再利用各种交联剂与PASP衍生物活性官能团反应制备水凝胶 | 可制备具有特殊结构或用途的凝胶 | 工艺复杂,不易大规模生产,成本高 |
合成方法 | 合成过程 | 优势 | 不足之处 |
---|---|---|---|
高能辐射交联 | |||
γ射线辐射交联 | 先由 PSI 水解得到线状 PSAP;再将线状 PSAP 溶解到水中,用γ射线辐射交联而最终得到交联 PSAP | 纯度高,吸水倍率高 | 不易大规模生产,且成本高、易产生放射性污染 |
紫外光辐射交联 | 以GMA、AMA或丙烯酰氯对PHEA或PSI接枝制备带双键衍生物,并暴露于紫外线光源处制得水凝胶 | 无需加热,反应速度快 | 需引入光敏基团,工艺复杂,且聚合过程中δ键易断裂 |
互补基团化学交联 | |||
PSI出发 | |||
先交联再水解 | 先在有机相中以二氨化合物为交联剂使 PSI 交联;再使交联 PSI 在碱性水溶液中水解得到交联 PSAP | 均相反应,交联度高 | 交联过程中使用了有机溶剂如 DMF、DMSO 等,容易产生环境问题 |
交联水解同时进行 | 在碱性水溶液中,并有交联剂存在下,将 PSI 一步交联、水解,得到水凝胶 | 工艺过程步骤少,不使用有机溶剂,环境污染小,成本较低 | 反应均一性较差,交联程度较低 |
先水解再交联 | 先在碱性条件下将PSI水解得线状PASP;再用环氧类交联剂交联得PASP水凝胶 | 均一性好,产物交联度高,不使用有机溶剂,工艺简单, 成本较低 | 主链上酰胺键易断裂,脆性较大 |
PASP衍生物出发 | 先采用羟基、氨基、巯基、烷氧基等活性基团对PSI改性开环制备PASP衍生物,再利用各种交联剂与PASP衍生物活性官能团反应制备水凝胶 | 可制备具有特殊结构或用途的凝胶 | 工艺复杂,不易大规模生产,成本高 |
1 | 谭天伟, 俞建良, 张栩. 生物炼制技术研究新进展[J]. 化工进展, 2011, 30(1): 117-125. |
TANTianwei, YUJianliang, ZHANGXu. Advance in biorefinery technology[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 117-125. | |
2 | 谭天伟, 苏海佳, 杨晶. 生物基材料产业化进展[J]. 中国材料进展, 2012, 31(2):1-6. |
TANTianwei, SUHaijia, YANGJing. Progress in industrialization of biobased materials[J]. Materials China, 2012, 31(2):1-6. | |
3 | TOMIDAM, YABEM, ARAKAWAY. Preparation conditions and properties of biodegradable hydrogels prepared by γ-irradiation of poly (aspartic acid)s synthesized by thermal polycondensation[J]. Polymer, 1997, 38(11):2791-2795. |
4 | SPADAROG, DISPENZAC, GIAMMONAG, et al. Cytarabine release from α,β-poly (N-hydroxyethyl)-DL-aspartamide matrices cross-linked through γ-radiation[J]. Biomoterials, 1996, 17(10): 953–958. |
5 | GIAMMONAG, PITARRESIG, CAVALLAROG, et al. pH-sensitive hydrogel based on a polyaspartamide derivative [J]. Journal of Drug Delivery Science and Technology, 2006, 16(1): 77-84. |
6 | GIAMMONAG, PITARRESIG. New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation[J]. Journal of Biomaterials Science, 2014, 10(9): 37-41. |
7 | LOPRESTIC, VETRIV, RICCAM, et al. Pulsatile protein release and protection using radiation-crosslinked polypeptide hydrogel delivery devices[J]. Reactive and Functional Polymers, 2011, 71(2):155-167. |
8 | PITARRESIG, PALUMBOF, GIAMMONAG, et al. Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives[J]. Biomaterials, 2003, 24(23): 4301-4313. |
9 | PITARRESIG, PIERROP, TRIPODOG, et al. Drug delivery from mucoadhesive disks based on a photo-cross-linkable polyaspartamide derivative[J]. Journal of Durg Delivery Science and Technology, 2005,15(5): 377-382. |
10 | PARKJ, MOONJ. Photo-crosslinked polyaspartamide hybrid gel containing thermo-responsive Pluronic triblock copolymer[J]. Journal of Polymer Research, 2011, 18(2):273-278. |
11 | CAOH, MA X, SUNS, et al. A new photocrosslinkable hydrogel based on a derivative of polyaspartic acid for the controlled release of ketoprofen[J]. Polymer Bulletin, 2010, 64(6):623-632. |
12 | NAGATOMOA, TAMATANIH, AJIOKAM, et al. Superabsorbent polymer and process for producing same: US5461085[P]. 1994-11-13. |
13 | ZHAOY, SUH, FANGL, et al. Superabsorbent hydrogels from poly (aspartic acid) with salt- , temperature- and pH-responsiveness properties[J]. Polymer, 2005, 46(14):5368-5376. |
14 | ZHAOY, FANGL, TANT. Optimization of the preparation of a poly (aspartic acid) superabsorbent resin with response surface methodology[J]. Journal of Applied Polymer Science, 2006, 102(3):2616-2622. |
15 | GYARMATIB, NEMETHYA, SZILAGYIA. Reversible response of poly(aspartic acid) hydrogels to external redox and pH stimuli[J]. RSC Advances, 2014, 17(4):8764-8771. |
16 | SATTARIS, TEHRANIA, ADELIM. pH-Responsive hybrid hydrogels as antibacterial and drug delivery systems[J]. Polymers, 2018, 10(6): 660. |
17 | WANGY, XUEM, WEIJ, et al. Novel solvent-free synthesis and modification of polyaspartic acid hydrogel[J]. RSC Advances, 2012,30(2):11592-11600. |
18 | MENGH, ZHANGX, SUNS, et al. Preparation of γ-aminopropyltriethoxysilane cross-linked poly (aspartic acid) superabsorbent hydrogels without organic solvent[J]. Journal of Biomaterials Science: Polymer Edition, 2016, 27(2):133-143. |
19 | MENGH, ZHANGX, CHENQ, et al. Preparation of poly (aspartic acid) superabsorbent hydrogels by solvent-free processes[J]. Journal of Polymer Engineering, 2015, 35(7):647-655. |
20 | GIAMMONAG, PITARRESIG, TOMARCHIOV, et al. New hydrogel matrices based on chemical crosslinked α,β-polyasparthydrazide: synthesis, characterization and in vivo biocompatibility studies[J]. International Journal of Pharmaceutics, 1996, 127:165-175. |
21 | GYARMATIB, VAJNAB, NEMETHYA. Redox- and pH-responsive cysteamine-modified poly (aspartic acid) showing a reversible sol-gel transition[J]. Macromolecular Bioscience, 2013,13(5):633-640. |
22 | KRISCHE, MESSAGERL, GYARMTIB, et al. Redox- and pH-responsive nanogels based on thiolated poly (aspartic acid)[J]. Macromolecular Materials and Engineering, 2016, 301(3):260-266. |
23 | JURIGAD, NAGYK, JEDLOVSZKY-HAJDUA, et al. Biodegradation and osteosarcoma cell cultivation on poly (aspartic acid) based hydrogels[J]. ACS Applied Materials & Interfaces, 2016, 36(8): 23463-23476. |
24 | LIY, CHENX, LIUY, et al. Synthesis and characterization of poly (aspartic acid) composite hydrogels with inorganic MCM-41 cross-linker[J]. Iranian Polymer Journal, 2014, 23(12):907-916. |
25 | LUJ, LIY, HUD, et al. Modified poly (aspartic acid)/poly (vinyl alcohol) IPN hydrogel and its drug controlled release[J]. BioMed Research Internationa, 2015, 236745. |
26 | LUC, WANGX, WUG, et al. An injectable and biodegradable hydrogel based on poly (α,β-aspartic acid) derivatives for localized drug delivery[J]. Journal of Biomedical Materials Research: Part A, 2014, 102(3):628-638. |
27 | TRANN, QUANGT, BUI T, et al. Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group[J]. Polymer Bulletin, 2015, 72(10): 2605-2620. |
28 | YANGJ, WANGF, FANGL, et al. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly (aspartic acid) and its composites[J]. Environmental Pollution, 2007, 149(1):125-130. |
29 | 马娇娇, 谭天伟, 凌沛学. 聚天冬氨酸/海藻酸钠高吸水树脂的合成与评价[J]. 北京化工大学学报(自然科学版), 2010, 37(1):98-101. |
JiaojiaoMA, TANTianwei, LINPeixue. Synthesis and evaluation of a high water-absorption capacity resin composed of sodium alginate and polyaspartic acid[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2010, 37(1):98-101. | |
30 | CHENX J, CAIJ C, ZHANGZ H. Investigation of removal of Pb(Ⅱ) and Hg(Ⅱ) by a novel cross-linked chitosan-poly (asparticacid) chelating resin containing disulfide bond[J]. Colloid and Polymer Science, 2014, 292(9):2157-2172. |
31 | 梁蕊, 王晓燕, 席国喜. 新型pH敏感羧甲基壳聚糖/聚天冬氨酸水凝胶的制备及性能[J]. 化工新型材料, 2013, 41(11):37-40. |
LIANGRui, WANGXiaoyan, XIGuoxi. Preparation and properties of noval pH-sensitive CMCS/PASP hydrogel[J]. New Chemical Materials, 2013, 41(11):37-40. | |
32 | WANGZ, CHENQ, LIUM, et al. Synthesis and characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel[J]. Bio-Medical Materials and Engineering, 2016, 27(15):589-601. |
33 | 叶满辉, 王丽. 聚天冬氨酸/木质纤维素水凝胶的制备及吸附性能[J]. 复合材料学报, 2016, 33(9):2094-2103. |
YEManhui, WANGLi. Preparation and absorption properties of polyaspartic acid preparation and absorption properties of polyaspartic acid/lignocellulose hydrogel[J]. Acta Materiae Compositae Sinica, 2016, 33(9):2094-2103. | |
34 | ZHAOY, KANGJ, TANT. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly (aspartic acid) and poly (acrylic acid)[J]. Polymer, 2006, 47(22):7702–7710. |
35 | LIUM, SUH, TANT. Synthesis and properties of thermo- and pH-sensitive poly (N-isopropylacrylamide )/polyaspartic acid IPN hydrogels[J]. Carbohydrate Polymers, 2012, 87(4):2425-2431. |
36 | SHARMAS, DUA A, MALIKA. Biocompatible stimuli responsive superabsorbent polymer for controlled release of GHK-Cu peptide for wound dressing application[J]. Journal of Polymer Research, 2017, 24(7): 104. |
37 | CHENX, LIJ, MAOC, et al. A novel superabsorbent composite based on poly (aspartic acid) and organo-Kaolin[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2014, 51(10):799-804. |
38 | CHENX, JIAZ, SHIH, et al. Synthesis and characterization of hydroxyl poly (aspartic acid)/organic bentonite superabsorbent composite[J]. Iranian Polymer Journal, 2016, 25(6):539-548. |
39 | MA G, YANGQ, RANF, et al. High performance and low cost composite superabsorbent based on polyaspartic acid and palygorskite clay[J]. Applied Clay Science, 2015, 118:21-28. |
40 | LVS, FENGC, GAOC, et al. Multifunctional environmental smart fertilizer based on L‑aspartic acid for sustained nutrient release[J]. Journal of Agricultural and Food Chemistry, 2016, 64(24):4965-4974. |
41 | WEIJ, YANGH, CAOH, et al. Using polyaspartic acid hydrogel as water retaining agent and its effect on plants under drought stress[J]. Saudi Journal of Biological Sciences, 2016, 23(5): 654-659. |
42 | YANGJ, CAOH, WANGF, et al. Application and appreciation of chemical sand fixing agent-poly(aspartic acid) and its composites[J]. Environmental Pollution, 2007, 150(3):381-384. |
43 | YANGJ, WANGF, FANGL, et al. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly (aspartic acid) and its composites[J]. Environmental Pollution, 2007, 149(1):125-130. |
44 | VAKILIM, ZAHMATKESHS, PANAHIYANM. Designed monomers and polymers poly(amide-hydrazide-imide)s containing L-aspartic acid: synthesis, characterization, and their applications in removal of heavy metal ions[J]. Designed Monomers and Polymers, 2015, 18(4):315-322. |
45 | 张鑫, 史璐皎, 刘晓云, 等. 聚天冬氨酸强化植物修复重金属污染土壤的研究[J]. 中国农学通报, 2013, 29(29):151-156. |
ZHANGXin, SHILujiao, LIUXiaoyun, et al. The research of enhancing phytoremediation of heavy metals contaminated soil with PASP[J]. Chinese Agricultural Science Bulletin, 2013, 29(29):151-156. | |
46 | LIUT, WANGR, CAOH, et al. Polyaspartic acid alleviates heavy metal toxicity in zebrafish (Danio rerio)[J]. Chemistry and Ecology, 2017, 33(7):684-693. |
47 | 叶满辉, 王丽, 杜慧琴. 聚天冬氨酸/木质纤维素水凝胶对Pb(Ⅱ)的吸附及脱附性能[J]. 高分子材料科学与工程, 2016, 32(11):63-69. |
YEManhui, WANGLi, DUHuiqin. Performance of adsorption and desorption of Pb(Ⅱ) by polyaspartic acid /lignocellulose hydrogels[J]. Polymer Materials Science and Engineering, 2016, 32(11):63-69. | |
48 | 叶满辉, 王丽. 聚天冬氨酸/木质纤维素水凝胶制备及溶胀性能研究[J]. 化工新型材料, 2017, 45(11):120-123. |
YEManhui, WANGLi. Preparation and swelling property of polyaspartic acid/lignocellulose hydrogel[J]. New Chemical Materials, 2017, 45(11):120-123. | |
49 | MANNJ, YUA, AGMONG, et al. Supramolecular polymeric biomaterials[J]. Biomaterials Science, 2018, 6(1): 10-37. |
50 | 朱健婷, 刘姗, 苏海佳. pH 敏感型聚天冬氨酸水凝胶制备工艺的优化及其释药性能[J]. 材料导报, 2010, 24(8): 100-103. |
ZHUJianting, LIUShan, SUHaijia. Study on optimization of preparing pH sensitive polyaspartic acid hydrogel and its drug release[J]. Materials Review, 2010, 24(8): 100-103. | |
51 | CAOH, ZHUJ, SUH, et al. Preparation a novel pH-sensitive blend hydrogel based on polyaspartic acid and ethylcellulose for controlled release of naproxen sodium[J]. Journal of Applied Polymer Science, 2009, 113(1):327-336. |
52 | GYARMATIB, KRISCHE, SZILAGYIA. In situ oxidation-induced gelation of poly (aspartic acid) thiomers[J]. Reactive & Functional Polymers, 2014, 84:29-36. |
53 | HORVÁTG, GYARMATIB, BERKOS, et al. Thiolated poly (aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system[J]. European Journal of Pharmaceutical Sciences, 2015, 67:1-11. |
54 | BUDAI-SZUCSM, KISSE, SZILAGYIB, et al. Mucoadhesive cyclodextrin-modified thiolated poly(aspartic acid) as a potential ophthalmic drug delivery system[J]. Polymers, 2018, 10(2):199. |
55 | ZHANGC, WUS, WUJ, et al. Preparation and characterization of microporous sodium poly (aspartic acid) nanofibrous hydrogel[J]. Journal of Porous Materials, 2017, 24(1):75-84. |
56 | WANGX, RENH, YANY, et al. A novel bio-based polyaspartic acid copolymer: synthesis, structure and performance of degradation[J]. Journal of Polymers and the Environment, 2018, 26(11): 4201-4210. |
57 | KURLANDE, RAGLANDR, ZHANGA, et al. pH responsive poly amino-acid hydrogels formed via silk sericin templating[J]. International Journal of Biological Macromolecules, 2014, 70: 565-571. |
58 | MASLOVAO, SENKOO, EFREMENKOE. Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics[J]. Russian Chemical Bulletin, 2018, 67(4): 614-623. |
59 | VEGA-CHACONJ, ARBELAEZM, JORGEJ, et al. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 77:366-373. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[5] | ZHANG Tingting, PAN Dawei, JU Xiaojie, LIU Zhuang, XIE Rui, WANG Wei, CHU Liangyin. Fabrication and performance of Hg2+-responsive smart hydrogel grating detector [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4143-4152. |
[6] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[7] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[8] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[9] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[10] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[11] | FENG Wanqi, HANISHA·Bhahti , GE Yuxuan, ZHAO Jianbo. Preparation and properties of magnetic polyaspartic acid/polyacrylamide semi-interpenetrating hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3130-3137. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[15] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |