1 | LIU J , QIAO S Z , CHEN J S , et al . Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries[J]. Chemical Communications, 2011, 47: 12578-12592. | 2 | ZHOU L , ZHAO D Y , LOU X W . LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries[J]. Angewandte Chemie, 2012, 51(1): 239-241. | 3 | LI X B , YANG Y , YANG Q H . Organo-functionalized silica hollow nanospheres: synthesis and catalytic application[J]. Journal of Materials Chemistry A, 2013, 1: 1525-1535. | 4 | SONG Y Y , LI Y , XIA X H . One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis[J]. Electrochemistry Communications, 2007, 9: 201-205. | 5 | KOO W T, CHOI S J , KIM N H , et al . Catalyst-decorated hollow WO3 nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor[J]. Sensors and Actuators B: Chemical, 2016, 223: 301-310. | 6 | ZHOU L , ZHUANG Z C , MAI L Q, et al . Intricate hollow structures: controlled synthesis and applications in energy storage and conversion[J]. Advanced Materials, 2017, 29(20): 160924. | 7 | DENG D H , NOVOSELOV K S , ZHENG N F , et al . Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11: 218-230. | 8 | SHI J , CHEN L F , REN N , et al . Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone[J]. Chemical Communications, 2012, 48: 8583-8585. | 9 | ENGSTORM K , JOHNSTON E V , VERHO O , et al . Co-immobilization of an enzyme and a metal into the compartments of mesoporous silica for cooperative tandem catalysis: an artificial metalloenzyme[J]. Angewandte Chemie International Edition, 2013, 52: 14006-14010. | 10 | AMANDINE G , CAREN G , RALPH K , et al . Hydrophobic nanoreactor soft-templating: a supramolecular approach to yolk@shell materials[J]. Advanced Functional Materials, 2015, 25: 6228-6240. | 11 | LEE J , KIM S M , LEE I S . Functionalization of hollow nanoparticles for nanoreactor applications[J]. Nano Today, 2014, 9(5): 631-667. | 12 | ZHU B T , WANG Z Y , DING S J . Hierarchical nickel sulfide hollow spheres for high performance supercapacitors[J]. RSC Advances, 2011, 1: 397-400. | 13 | LEE I, JOO J I, YIN Y D , et al . A yolk@shell nanoarchitecture for Au/TiO2 catalysts[J]. Angewandte Chemie International Edition, 2011, 17:10208-10211. | 14 | QI J , LAI X Y , WANG D , et al . Multi-shelled hollow micro-nanostructures[J]. Chemical Society Reviews, 2015, 44: 6749-6773. | 15 | KIM J H , YOO S B, YU J S , et al . Hollow core/mesoporous shell carbon capsule as an unique cathode catalyst support in direct methanol fuel cell[J]. Applied Catalysis B: Environmental, 2009, 88: 368-375. | 16 | LI B W , ZENG H C . Architecture and preparation of hollow catalytic devices[J]. Advanced Materials, 2018, 25:1801104. | 17 | HU J , CHEN M , WU L M , et al . Fabrication and application of inorganic hollow spheres[J]. Chemical Society Reviews, 2011, 40: 5472-5491. | 18 | LI G L , MOHWALD H , SHCHUKINL D G . Precipitation polymerization for fabrication of complex core-shell hybrid particles and hollow structures[J]. Chemical Society Reviews, 2013, 42: 3628-3646. | 19 | LI S J , PASC A , FIERRO V , et al . Hollow carbon spheres, synthesis and applications—A review[J].Journal of Materials Chemistry A, 2016,4: 12686-12713. | 20 | FENG Y , YU X Y , PAIK U . Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution[J]. Chemical Communications, 2016, 52: 1633-1636. | 21 | YAGHI O M , O'KEEFFE M , OCKWING N W , et al . Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714. | 22 | SHI J Y , WANG C A , LI Z J , et al . Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst[J]. Chemistry A: European Journal, 2011, 17: 6206-6213. | 23 | FANG X L , LIU Z H , M-F HSIEH , et al . Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors[J]. ACS Nano, 2012, 6: 4434-4444. | 24 | WANG J X , MA C, CHOI Y M , et al . Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity[J]. Journal of the American Chemical Society, 2011, 133: 13551-13557. | 25 | HU W Y , ZHOU W , ZHANG K F , et al . Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4: 7495-7502. | 26 | LU A H , LI W C , HAO G P , et al . Easy synthesis of hollow polymer, carbon, and graphitized microspheres[J]. Angewandte Chemie International Edition, 2010, 49: 1615-1618. | 27 | ZHANG M L , WANG Y G , CHEN W X , et al . Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials[J]. Journal of the American Chemical Society, 2017, 139: 10976-10979. | 28 | LU G , LI S Z , GUO Z , et al . Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012, 4: 310–316. | 29 | HE C Y , TAO J Z . Three-dimensional hollow porous Co6Mo6C nanoframe as an highly active and durable electrocatalyst for water splitting[J]. Journal of Catalysis, 2017, 347: 63-71. | 30 | YU X Y , HU H , WANG Y W , et al . Ultrathin MoS2 manosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties[J]. Angewandte Chemie International Edition, 2015, 54: 7395-7398. | 31 | CAI B , WEN D , LIU W , et al . Function-Led design of aerogels: self-assembly of alloyed PdNi hollow nanospheres for efficient electrocatalysis[J]. Angewandte Chemie International Edition, 2015, 54: 13101-13105. | 32 | WANG S B , ZHU W , KE J , et al . Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward suzuki cross-coupling reactions[J]. ACS Catalysis, 2014, 4(7): 2298-2306. | 33 | THOTA S , CHEN S T , ZHAO J . An unconventional mechanism of hollow nanorod formation: asymmetric Cu diffusion in Au-Cu alloy nanorods during galvanic replacement reaction[J]. Chemical Communications, 2016, 52: 5593-5596. | 34 | YU X Y , YU L , WU H B , et al . Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties[J]. Angewandte Chemie International Edition, 2015, 54: 5331-5335. | 35 | LI T T , XUE B , WANG B W , et al . Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity[J]. Journal of the American Chemical Society, 2017, 139:12133-12136. | 36 | TAN Y C , ZENG H C . Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures[J]. Chemical Communications, 2016,52: 11591-11594. | 37 | ZHANG T Q , LIU J , HUANG L B , et al . Microbial-phosphorus-enabled synthesis of phosphide nanocomposites for efficient electrocatalysts[J]. Journal of the American Chemical Society, 2017,139: 11248-11253. | 38 | WANG H , ZHUO S F , LIANG Y , et al . General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances[J]. Angewandte Chemie International Edition, 2016, 55: 9055-9059. | 39 | LIU Y J , LI T T , CHEN W W , et al . Hierarchical hollow TiO2@CeO2 nanocube heterostructures for photocatalytic detoxification of cyanide[J]. RSC Advances, 2015, 5: 11733-11737. | 40 | ZHOU C , ZHAO Y F , BIAN T , et al . Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production[J]. Chemical Communications, 2013, 49: 9872-9874 . | 41 | XIE J F , ZHANG X D , ZHANG H , et al . Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance[J]. Advanced Materials, 2017, 29(10): 1604765. | 42 | WU S H , TA C T, LING Y S , et al . Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst[J].Journal of Materials Chemistry, 2011, 21: 789-794. | 43 | LI X , CAI T , KANG E T . Yolk-shell nanocomposites of a gold nanocore encapsulated in an electroactive polyaniline shell for catalytic aerobic oxidation[J]. ACS Omega, 2016,1: 160-167. | 44 | SUN Q , GUO C Z , WANG G H , et al . Resolved functionalities and high activity for nitrobenzene hydrogenation[J]. European Journal of Chemistry, 2013, 19: 6217-6220. | 45 | GALEANO C , MEIER J C , PEINECKE V . Toward highly stable electrocatalysts via nanoparticle pore confinement[J]. Chemistry of Materials , 2012, 24: 1917-1929. | 46 | PIZZUTILO E , KNOSSALLA J , GEIGER S , et al . The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt-Co nanocatalysts for PEMFC[J]. Advanced Energy Materials, 2017, 7: 1700835. | 47 | ZHANG W , LIN X J , SUN Y G , et al . Controlled formation of metal@Al2O3 yolk-shell nanostructures with improved thermal stability[J]. ACS Applied Materials & Interfaces, 2015, 7: 27031-27034. | 48 | ARNAL P , COMOTTI M , SCHUTH F . High-temperature-stable catalysts by hollow sphere encapsulation[J]. Angewandte Chemie International Edition, 2006, 45: 8224-8227. | 49 | YEC C C , ZENG H C . Synthetic architecture of multiple core-shell and yolk-shell structures of (Cu2O@) n Cu2O (n = 1-4) with centricity and eccentricity[J]. Chemistry of Materials, 2012, 24: 1917-1921. | 50 | YANG H X , QIAN J F , CHEN Z X . Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment[J]. The Journal of Physical Chemistry C, 2007, 46: 14067-14071. | 51 | XU H L , WANG W Z .Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall[J]. Angewandte Chemie International Edition, 2007, 46: 1489-1492. | 52 | LIN H B , RONG H B , HUANG W Z , et al . Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 14189-14194. | 53 | WANG Z Y , WANG Z C , WU H B , et al . Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors[J]. Scientific Reports, 2013, 3: 1391. | 54 | XIONG S L , ZENG H C . Serial ionic exchange for the synthesis of multishelled copper sulfide hollow spheres[J]. Angewandte Chemie International Edition, 2012, 51: 949-952. | 55 | QI J , ZHAO K , GAO Y , et al . Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation[J]. Nanoscale, 2014, 6: 4072-4077. | 56 | LIU W X , HUANG J J , YANG Q , et al . Multi-shelled hollow metal-organic frameworks[J]. Angewandte Chemie International Edition, 2017, 56: 5512-5516. | 57 | WANG T , CUI W H , PENG M L , et al . Template-free synthesis of multiple-shell MgO/Pt hollow spheres as enhanced electrocatalysts[J]. Journal of Materials Chemistry A, 2016, 4: 8584-8589. | 58 | WU G , MORE K L , JOHNSTON C M , et al . High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332: 443-447. | 59 | QIU H J , ITO Y, CONG W T , et al . Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie International Edition, 2015, 54: 14031-14035. | 60 | KLET C R , WANG T C , FERNANDEZ L E , et al . Synthetic access to atomically dispersed metals in metal-organic frameworks via a combined atomic-layer-deposition-in-MOF and metal-exchange approach[J]. Chemistry of Materials, 2016, 28: 1213-1219. | 61 | WANG B W , WANG X X , ZOU J X , et al . Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction[J]. Nano Letters, 2017, 17: 2003-2009. | 62 | SA Y J, SEO D J, WOO J, et al . A general approach to preferential formation of active Fe-N x sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2016, 138: 15046-15056. | 63 | WANG J , HUANG Z , LIU W , et al . Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017, 139: 17281-17284. | 64 | HAN Y H , WANG Y G , CHEN W X , et al . Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2017, 139: 17269-17272. | 65 | HE P L , XU B , XU X B , et al . Surfactant encapsulated palladium-polyoxometalates: controlled assembly and their application as single-atom catalysts[J]. Chemical Science, 2016, 7: 1011-1015. | 66 | SUN H , LIAN Y B , YANG C , et al . A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting [J]. Energy & Environmental Science, 2018, 11: 2363-2371. | 67 | SHI S , WANG M , CHEN C , et al . Super-hydrophobic yolk-shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds[J]. Chemical Communications, 2013, 49: 9591-9593. | 68 | ZHANG Q , SHU X Z , LUCAS J M , et al . Inorganic micelles as efficient and recyclable micellar catalysts[J]. Nano Letters, 2013, 14: 379-383. | 69 | XUE F , ZHANG Y B , ZHANG F W , et al . Tuning the interfacial activity of mesoporous silicas for biphasic interface catalysis reactions[J]. ACS Applied Materials & Interfaces, 2017, 9: 8403-8412. | 70 | GAO J S , LIU J , BAI S Y , et al . The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction[J]. Journal of Materials Chemistry, 2009, 19: 8580-8588. | 71 | ZHANG X H , SUA F, SONG D Y , et al . Preparation of efficient and recoverable organosulfonic acid functionalized alkyl-bridged organosilica nanotubes for esterification and transesterification[J]. Applied Catalysis B: Environmental, 2015, 163: 50-62. | 72 | WU S , DZUBIELLA J , KAISER J ,et al . Thermosensitive Au-PNIPAYolk-shell nanoparticles with tunable selectivity for catalysis[J]. Angewandte Chemie International Edition, 2012, 51: 2229-2233. |
|