Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3465-3472.DOI: 10.16085/j.issn.1000-6613.2018-2067
• Applied technology • Previous Articles Next Articles
Xiangchen FANG(),Long ZHANG,Ying ZHANG,Yangfeng WANG
Received:
2018-10-19
Online:
2019-07-05
Published:
2019-07-05
作者简介:
方向晨(1960—),男,博士,教授级高级工程师,研究方向为石油化工工艺及反应动力学。E-mail: <email>fangxiangchen.fshy@sinopec.com</email>。
基金资助:
CLC Number:
Xiangchen FANG, Long ZHANG, Ying ZHANG, Yangfeng WANG. Research and application of absorption and stabilization technology for delayed coking[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3465-3472.
方向晨, 张龙, 张英, 王阳峰. 延迟焦化油气稳定吸收技术研究及应用[J]. 化工进展, 2019, 38(07): 3465-3472.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2067
组分 | 贫气中 | |
---|---|---|
焦化粗汽油 | 稳定汽油 | |
合计 | 7.7333 | 5.6157 |
丙烷 | 4.3981 | 3.1293 |
丙烯 | 2.2949 | 1.7986 |
正丁烷 | 0.1998 | 0.0610 |
异丁烷 | 0.4920 | 0.4042 |
正丁烯 | 0.1537 | 0.0773 |
异丁烯 | 0.1118 | 0.0503 |
反丁烯 | 0.0400 | 0.0320 |
顺丁烯 | 0.0266 | 0.0277 |
异戊烷 | 0.0165 | 0.0353 |
组分 | 贫气中 | |
---|---|---|
焦化粗汽油 | 稳定汽油 | |
合计 | 7.7333 | 5.6157 |
丙烷 | 4.3981 | 3.1293 |
丙烯 | 2.2949 | 1.7986 |
正丁烷 | 0.1998 | 0.0610 |
异丁烷 | 0.4920 | 0.4042 |
正丁烯 | 0.1537 | 0.0773 |
异丁烯 | 0.1118 | 0.0503 |
反丁烯 | 0.0400 | 0.0320 |
顺丁烯 | 0.0266 | 0.0277 |
异戊烷 | 0.0165 | 0.0353 |
项目 | 与工业数据的偏差/% | ||
---|---|---|---|
BK10 | PR | SRK | |
干气中 | -13.46 | -7.29 | -5.78 |
液化气中 | 52.36 | 8.39 | 6.28 |
液化气蒸汽压 | -17.26 | -3.29 | -4.78 |
稳定汽油蒸汽压 | -21.72 | -5.84 | -5.84 |
稳定汽油终馏点 | -2.94 | 0 | 0 |
液化气产量 | 14.57 | 3.56 | 2.19 |
干气产量 | -9.31 | -2.87 | -2.56 |
项目 | 与工业数据的偏差/% | ||
---|---|---|---|
BK10 | PR | SRK | |
干气中 | -13.46 | -7.29 | -5.78 |
液化气中 | 52.36 | 8.39 | 6.28 |
液化气蒸汽压 | -17.26 | -3.29 | -4.78 |
稳定汽油蒸汽压 | -21.72 | -5.84 | -5.84 |
稳定汽油终馏点 | -2.94 | 0 | 0 |
液化气产量 | 14.57 | 3.56 | 2.19 |
干气产量 | -9.31 | -2.87 | -2.56 |
干气组分 | 体积分数/% | |
---|---|---|
新工艺 | 传统工艺 | |
甲烷 | 52.12 | 51.16 |
乙烷 | 17.21 | 17.42 |
乙烯 | 2.76 | 2.66 |
丙烷 | 0.95 | 2.30 |
丙烯 | 0.81 | 1.20 |
异丁烷 | 0.04 | 0.35 |
正丁烷 | 0.11 | 0.72 |
正丁烯 | 0.07 | 0.04 |
异丁烯 | 0.04 | 0.03 |
反丁烯 | 0.01 | 0.01 |
顺丁烯 | 0.01 | 0.01 |
异戊烷 | 0.00 | 0.00 |
正戊烷 | 0.00 | 0.00 |
氧气 | 0.61 | 0.58 |
氮气 | 3.81 | 3.49 |
硫化氢 | 6.78 | 6.17 |
氢气 | 14.67 | 13.86 |
≥C3含量 | 2.04 | 4.66 |
干气组分 | 体积分数/% | |
---|---|---|
新工艺 | 传统工艺 | |
甲烷 | 52.12 | 51.16 |
乙烷 | 17.21 | 17.42 |
乙烯 | 2.76 | 2.66 |
丙烷 | 0.95 | 2.30 |
丙烯 | 0.81 | 1.20 |
异丁烷 | 0.04 | 0.35 |
正丁烷 | 0.11 | 0.72 |
正丁烯 | 0.07 | 0.04 |
异丁烯 | 0.04 | 0.03 |
反丁烯 | 0.01 | 0.01 |
顺丁烯 | 0.01 | 0.01 |
异戊烷 | 0.00 | 0.00 |
正戊烷 | 0.00 | 0.00 |
氧气 | 0.61 | 0.58 |
氮气 | 3.81 | 3.49 |
硫化氢 | 6.78 | 6.17 |
氢气 | 14.67 | 13.86 |
≥C3含量 | 2.04 | 4.66 |
干气组分 | 体积分数/% | |||||
---|---|---|---|---|---|---|
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 改造前 | |
甲烷 | 48.84 | 47.59 | 49.15 | 48.92 | 51.59 | 50.82 |
乙烷 | 18.13 | 18.10 | 18.08 | 18.11 | 17.40 | 17.42 |
乙烯 | 2.29 | 2.16 | 2.28 | 2.12 | 2.02 | 2.45 |
丙烷 | 0.87 | 0.85 | 1.09 | 0.60 | 0.72 | 2.3 |
丙烯 | 0.39 | 0.35 | 0.51 | 0.22 | 0.30 | 1.2 |
异丁烷 | 0.30 | 0.30 | 0.35 | 0.25 | 0.27 | 0.41 |
正丁烷 | 0.91 | 0.82 | 1.14 | 0.63 | 0.79 | 1.32 |
正丁烯 | 0.14 | 0.13 | 0.16 | 0.11 | 0.12 | 0.04 |
异丁烯 | 0.20 | 0.19 | 0.23 | 0.15 | 0.17 | 0.03 |
反丁烯 | 0.05 | 0.04 | 0.07 | 0.03 | 0.04 | 0.01 |
顺丁烯 | 0.03 | 0.02 | 0.07 | — | 0.02 | 0.01 |
氧气 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.53 |
氮气 | 4.45 | 3.56 | 4.4 | 3.21 | 2.78 | 3.43 |
硫化氢 | 7.22 | 7.85 | 7.47 | 7.94 | 7.67 | 6.17 |
二氧化碳 | 0.11 | |||||
氢气 | 15.63 | 17.54 | 14.46 | 17.10 | 15.61 | 13.86 |
≥C3 | 2.94 | 2.70 | 2.68 | 1.99 | 2.43 | 5.32 |
≥C5 | 0.05 | — | 0.04 | — | — | — |
干气组分 | 体积分数/% | |||||
---|---|---|---|---|---|---|
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 改造前 | |
甲烷 | 48.84 | 47.59 | 49.15 | 48.92 | 51.59 | 50.82 |
乙烷 | 18.13 | 18.10 | 18.08 | 18.11 | 17.40 | 17.42 |
乙烯 | 2.29 | 2.16 | 2.28 | 2.12 | 2.02 | 2.45 |
丙烷 | 0.87 | 0.85 | 1.09 | 0.60 | 0.72 | 2.3 |
丙烯 | 0.39 | 0.35 | 0.51 | 0.22 | 0.30 | 1.2 |
异丁烷 | 0.30 | 0.30 | 0.35 | 0.25 | 0.27 | 0.41 |
正丁烷 | 0.91 | 0.82 | 1.14 | 0.63 | 0.79 | 1.32 |
正丁烯 | 0.14 | 0.13 | 0.16 | 0.11 | 0.12 | 0.04 |
异丁烯 | 0.20 | 0.19 | 0.23 | 0.15 | 0.17 | 0.03 |
反丁烯 | 0.05 | 0.04 | 0.07 | 0.03 | 0.04 | 0.01 |
顺丁烯 | 0.03 | 0.02 | 0.07 | — | 0.02 | 0.01 |
氧气 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.53 |
氮气 | 4.45 | 3.56 | 4.4 | 3.21 | 2.78 | 3.43 |
硫化氢 | 7.22 | 7.85 | 7.47 | 7.94 | 7.67 | 6.17 |
二氧化碳 | 0.11 | |||||
氢气 | 15.63 | 17.54 | 14.46 | 17.10 | 15.61 | 13.86 |
≥C3 | 2.94 | 2.70 | 2.68 | 1.99 | 2.43 | 5.32 |
≥C5 | 0.05 | — | 0.04 | — | — | — |
1 | DEBIASER. Status and progress of delayed coking preprints division of petroleum and chemistry[J]. ACS, 1984, 29(2): 412-423. |
2 | 陆恩锡, 张慧娟, 秦云锋. 总体优化提高装置的经济效益[J]. 化工科技, 2000, 8(4): 65-69. |
3 | LUEnxi, ZHANGHuijuan, QINYunfeng. Profit enhancement using global optimization[J]. Science&Technologe in Chemical Industry, 2000, 8(4): 65-69. |
4 | 杜翔, 吴少敏, 李长庚, 等. 吸收稳定系统吸收/解吸塔的单塔改造[J]. 化学工程, 2002, 30(3): 16-21. |
DUXiang, WUShaomin, LIChanggeng, et al. Revamping of absorption-desorption single-tower in absorb-stabilization system[J]. Chemical Engineering, 2002, 30(3): 16-21. | |
5 | 李玉芳, 伍小明. 丙烯需求旺盛供应仍紧[J]. 中国石油和化工, 2005(5): 35-39. |
LIYufang, WUXiaoming. Propylene demand strong and supply still tight[J]. China Petroleum and Chemical Industry, 2005(5): 35-39. | |
6 | WodnikRICK. Delayed coking advances[J]. Petroleum Technology Quarterly, 2005(4): 1-6. |
7 | FEINTUCHH M, NEGINK M. FW delayed coking process[M]//MEYERS R A. Handbook of petroleum refining processes. New York:McGraw-Hill, 2004: 12.33-12.89. |
8 | 郑陵, 杜英生, 王颖析, 等. 催化裂化吸收稳定系统吸收效果影响因素的分析[J]. 石油学报, 1995, 11(2): 78-85. |
ZHENLing, DUYingsheng, WANGYingxi, et al. Analysis of influencing factors of absorption stabilization system in catalytic cracking[J]. Acta Petrolei Sinica, 1995, 11(2): 78-85. | |
9 | 陆恩锡, 陈银杯, 张慧娟, 等. 吸收稳定系统集成化的设计、优化和分析方法[J]. 化学工程, 1999, 27 (2): 37-40. |
LUEnxi, CHENYinbei, ZHANGHuijuan, et al. A method of the integrated design, optimization and evaluation for the absorption stabilization system[J]. Chemical Engineering, 1999, 27(2): 37-40. | |
10 | 张鹏飞, 张华伟, 王聪, 等. 吸收稳定系统能量分析及优化[J]. 炼油与化工, 2006, 17(2): 1-2. |
ZHANGPengfei, ZHANGHuawei, WANGCong, et al. Energy analysia and optimization on absorption and stabilization system[J]. Refining and Chemical Industry, 2006, 17(2): 1-2. | |
11 | 支红利, 程光旭, 杨永, 等. 催化裂化吸收稳定系统解吸塔双股进料的总体优化[J]. 化工进展, 2004, 23(1): 91-94. |
ZHIHongli, CHENGGuangxu, YANGYong, et al. Double feed integrated optimization of desorption column of FCC absorption and stabilization system[J]. Chemical Industry and Engineering Progress, 2004, 23(1): 91-94. | |
12 | 张可伟. 重油催化裂化装置吸收稳定系统流程改进及操作优化[J]. 石油炼制与化工, 2007, 38(12): 15-19. |
ZHANGKewei. Process modification and operation optimization of absorption and stabilization system of RFCCU[J]. Petroleum Processing and Petrochemicals, 2007, 38(12): 15-19. | |
13 | 张健民, 李松年. 催化裂化装置吸收解吸系统工艺参数全面分析及最佳工艺参数的确定[J]. 石油学报(石油加工), 2001, 17(2): 30-37. |
ZHANGJianmin, LISongnian. Analysis and optimization of process parameters of FCC absorption and desorption system[J]. Acta Petrolei Sinica, 2001, 17(2): 30-37. | |
14 | 陆恩锡, 张慧娟, 陈银杯. 吸收稳定系统解吸塔最佳釜温的确定[J]. 炼油设计, 1998, 28(5): 38-40. |
LUEnxi, ZHANGHuijuan, CHENYinbei. Determination of optimum stripper bottom temperature of absorber-stabilizer system[J]. Petroleum Refinery Engineering, 1998, 28(5): 38-40. | |
15 | 张吕鸿, 王璐, 孙津生, 等. 催化裂化吸收-解吸单塔节能流程[J]. 石油炼制与化工, 2000, 31(1): 44-47. |
ZHANGLühong, WANGLu, SUNJinsheng, et al. A new integrated absorption/desorption unit in FCCU for energy conservation[J]. Petroleum Processing and Petrochemicals, 2000, 31(1): 44-47. | |
16 | 张鹏飞, 王申江, 张华伟, 等. 吸收稳定系统能耗分析及优化[J]. 化学工程, 2006, 34(11): 75-77. |
ZHANGPengfei, WANGShenjiang, ZHANGHuawei, et al. Analysis of energy consumption and optimization absorption-stabilization system[J]. Chemical Engineering, 2006, 34(11):75-77. | |
17 | 王春花, 陈清林, 华贲, 等. 延迟焦化主分馏塔工艺模拟与扩能分析[J]. 华南理工大学学报(自然科学版), 2006, 34(12): 110-114. |
WANChunhua, CHENQinglin, HUABen, et al. Process simulation and enlarged capacity of main fractionation column in delayed unit[J]. Journal of South China University of Technology (Natural Science Editon), 2006, 34(12): 110-114. | |
18 | 陆恩锡, 张慧娟, 朱霞林. 吸收稳定系统工艺流程现状和新流程开发(Ⅱ)新的节能工艺流程开发[J]. 炼油设计, 2001, 31(7): 15-17. |
LUEnxi, ZHANGHuijuan, ZHUXialin. Status quo and new process for absorption and stabilization system[J]. Petroleum Refinery Engineering, 2001, 31(7): 15-17. | |
19 | 孙津生, 王艳红, 高红, 等. 焦化吸收稳定节能工艺: CN101602960A[P]. 2009-12-16. |
SUNJinshen, WANGYanhon, GAOHong, et al. Energy saving process for coking absorption stabilization: CN101602960A[P]. 2009-12-16. | |
20 | 黄明富, 李国庆, 李亚军, 等. 吸收稳定系统稳定塔侧线汽油作补充吸收剂[J]. 炼油技术与工程, 2008, 38(11): 22-25. |
HUANGMingfu, LIGuoqin, LIYajun, et al. Study on using stabilizer side-cut naphtha as supplementary absorbent of absorber[J]. Petroleum Refinery Engineering, 2008, 38(11): 22-25. | |
21 | 倪宗莅, 黄晓强. 一种炼油吸收稳定工艺: CN1321724A[P]. 2001-11-14. |
NIZongli,HUANGXiaoqiang. A refining absorption and stabilization process: CN 1321724A[P]. 2001-11-14. | |
22 | 隋红, 李国涛, 李鑫钢, 等. 吸收稳定系统节能装置及操作工艺: CN 101531919A[P]. 2009-09-16. |
HongSUI, LIGuotao, LIXingang, et al. Energy-saving device and operation technology of absorption and stabilization system: CN 101531919A[P]. 2009-09-16. | |
23 | 毛安国, 侯曲国. 一种降低干气中C3以上组分含量的方法: CN 1763156A[P]. 2006-04-26. |
MAOAnguo, HOUQuguo. A method for reducing the content of components above C3 in dry gas: CN 1763156A[P]. 2006-04-26. | |
24 | 张龙, 方向晨, 张英, 等. 炼厂吸收稳定新工艺探讨[J]. 现代化工, 2019, 39 (1): 196-199. |
ZHANGLong, FANGXiangchen, ZHANGYing, et al. Discussion on new process of refinery absorption and stabilization unit[J]. Modern Chemical Industry, 2019, 39(1) :196-199. | |
25 | 郑陵, 杜英生, 王颖析, 等. 催化裂化吸收稳定系统吸收效果影响因素的分析[J]. 石油学报, 1995, 11(2): 78-85. |
ZHENLing, DUYingsheng,WANGYingxi, et al. Analysis of influencing factors of absorption stabilization system in catalytic cracking[J]. Acta Petrolei Sinica, 1995, 11(2) : 78-85. | |
26 | 张龙, 陈建兵, 张英, 等. 利用自身余能强化吸收的吸收稳定工艺: CN 201611083229.1[P]. 2016-11-30. |
ZHANGLong, CHENJianbing, ZHANGYing, et al. Absorption stabilization process for enhancing absorption by self-surplus energy: CN201611083229.1[P]. 2016-11-30. | |
27 | 沙有鑫, 龙军, 谢朝刚, 等. 催化裂解过程中空速和剂油比对液化气生成的影响[J]. 石油炼制与化工, 2012, 43(4): 1-4. |
SHAYouxin, LONGJun, XIEChaogang, et al. Effect of catalyst to oil ratio and space velocity on the formation of LPG in deep catalytic cracking process[J]. Petroleum Processing and Petrochemicals, 2012, 43(4): 1-4. | |
28 | 李鑫钢, 赵汝文. 规整填料塔技术在炼油工业中的应用[J]. 全面腐蚀控制, 1994(4):87-95. |
LIXingang, ZHAORuwen. Application of structured packing tower technology in refining industry [J]. Total Corrosion, 1994(4) :87-95. | |
29 | 吴思其. 规整填料片上气液两相流动及传质特性研究[D]. 杭州: 浙江大学, 2017:19-33. |
WUSiqi. Research on gas-liquid film flow characteristics and mass transfer characteristics of corrugation packing surface[D]. Hangzhou: Zhejiang University ,2017:19-33. | |
30 | 朱开宏. 化工过程流程模拟[M]. 北京:中国石化出版社, 1993: 1-14. |
ZHUKaihong. Chemical process flow simulation[M]. Beijing: China Petrochemical Press, 1993: 1-14. | |
31 | 刘正庚, 赵建华, 李制. 石油化工流程模拟与应用[J]. 计算机与应用化学, 1993, 10(3): 161-164. |
LIUZhenggeng, ZHAOJianhua, LIZhi. Petrochemical process simulation and applicatio[J]. Computers and Applied Chemistry, 1993, 10(3): 161-164. | |
32 | 杨科. 催化裂化装置主分馏塔工艺模拟与分析[J]. 化工进展, 2003, 22(9): 988-991. |
YANGKe. Process simulation and analysis main fractionation column in FCC unit[J]. Chemical Industry and Engineering Progress, 2003, 22(9): 988-991. | |
33 | WANGChunhua, CHENQinglin, HUABen. Process simulation and analysis of main fractionation column in delayed coking unit[J]. Computers and Applied Chemistry, 2006, 23(12): 1183-1187. |
34 | WILHELME, BATTINOR, WILCOCKR J. Low-pressure solubility of gases in liquid water[J]. Chemical Reviews, 1977, 77(2): 219-262. |
[1] | CHEN Weiliang, GAO Xin, LI Hong, LI Xingang. Influence mechanism of skeleton structure of foamed SiC corrugated structured packing on the mass transfer performance [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2289-2297. |
[2] | HAN Hongming, CONG Haifeng, LI Hong, GAO Xin, LI Xingang. Formation and fluid flow of helical channels liquid-bridge in helical liquid-bridge flow structured packings [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 584-592. |
[3] | FAN Zheng, TIAN Runzhi, LIN Liang, HAN Yanzhong, GUO Yang, DOU Longlong, JING Genhui, TYOOR Agi Damian. Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3107-3118. |
[4] | Huixin YUAN, Weiwen LUO, Shuangcheng FU, Mingjia LU, Nanhua DING. Analysis of mass and heat transfer process of packing evaporator in HD low temperature evaporation system [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2132-2141. |
[5] | ZHANG Mengxian, LI Yuxing, HAN Hui, ZHU Jianlu, CHANG Xueyu. Numerical simulations of liquid spreading in structured packed column based on liquid dispersion [J]. Chemical Industry and Engineering Progress, 2017, 36(03): 823-831. |
[6] | TAN Liyuan, YUAN Xigang, KALBASSI Mohammad Ali. Effect of structured packing's structure on liquid distribution by computational fluid dynamics [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3869-3878. |
[7] | ZHANG Yue, YUAN Xigang. Mass transfer of low surface tension system in packed column containing structured packings [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3595-3600,3664. |
[8] | ZHANG Jingsheng, LI Dongfeng. Overview on recovery technologies of refinery dry gas [J]. Chemical Industry and Engineering Progree, 2015, 34(09): 3207-3215. |
[9] | ZHANG Huishu, YUAN Xigang, KALBASSI Mohammad Ali. Research progress of liquid distribution in structured packing [J]. Chemical Industry and Engineering Progree, 2015, 34(08): 2932-2939. |
[10] | LI Jianwei1,WANG Jia1,LIU Xueling2,CHEN Gang1,GUO Chunlin1,CONG Jin1,WANG Lei1,CHEN Lei1,WANG Yabo1. Industrial application of ethylbenzene production technology from FCC dry gas [J]. Chemical Industry and Engineering Progree, 2010, 29(9): 1790-. |
[11] | GAO Guohua1,CHEN Jianmin2,LI Xingang1,2,LI Hong1,2. Simulation of two-phase flow on two-dimensional corrugated [J]. Chemical Industry and Engineering Progree, 2010, 29(9): 1597-. |
[12] |
YANG Fenfen,ZHANG Minqing,LI Jian,LIU Zhaoyan.
Mass transfer performance of a new type structured packing of rhombus mesh frame [J]. Chemical Industry and Engineering Progree, 2007, 26(5): 679-. |
[13] |
LIU Dian,ZHAO Guohua,YANG Chunhui,ZHANG Jingtao,GONG Maojin.
Leakage analysis of dry gas seal in ammonia compressor and revamping with China-made parts [J]. Chemical Industry and Engineering Progree, 2006, 25(4): 452-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |