Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2939-2946.DOI: 10.16085/j.issn.1000-6613.2018-1667
• Fine chemicals • Previous Articles Next Articles
Qian HUANG(),Meilong FU(),Zhongcong ZHAO
Received:
2018-08-16
Online:
2019-06-05
Published:
2019-06-05
Contact:
Meilong FU
通讯作者:
付美龙
作者简介:
黄倩(1987—),女,博士研究生。E-mail: <email>912773195@qq.com</email>。
基金资助:
CLC Number:
Qian HUANG, Meilong FU, Zhongcong ZHAO. Experimental evaluation and thickening mechanism of long tube in supercritical CO2 fracturing fluid tackifier[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2939-2946.
黄倩, 付美龙, 赵众从. 超临界CO2压裂液增黏剂的长管实验评价及增黏机制探讨[J]. 化工进展, 2019, 38(06): 2939-2946.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1667
测试介质 | 增黏剂质量分数/% | 剪切速率 /s-1 | 压裂液黏度 /mPa·s | 增黏 倍数 |
---|---|---|---|---|
CO2 | 0 | 22727 | 0.048 | — |
CO2+PMSQ | 1 | 7818 | 0.313 | 6.5 |
2 | 6723 | 0.437 | 9.1 | |
3 | 5923 | 0.586 | 12.2 | |
CO2+PVAc | 1 | 19800 | 0.0576 | 1.2 |
2 | 15336 | 0.0768 | 1.6 | |
3 | 9589 | 0.146 | 3.0 | |
CO2+PMSQ-VAc | 1 | 5927 | 2.299 | 47.9 |
2 | 2435 | 3.172 | 66.1 | |
3 | 3041 | 3.659 | 76.2 | |
CO2+PFOA | 1 | 14138 | 0.0816 | 1.7 |
2 | 10438 | 0.1248 | 2.6 | |
3 | 8803 | 0.1632 | 3.4 | |
CO2+PS | 1 | 17815 | 0.072 | 1.5 |
2 | 11406 | 0.1104 | 2.3 | |
3 | 8771 | 0.1584 | 3.3 | |
CO2+PolyFAST | 1 | 1008 | 10.615 | 221.1 |
2 | 312 | 12.816 | 267.0 | |
3 | 237 | 15.202 | 316.7 |
测试介质 | 增黏剂质量分数/% | 剪切速率 /s-1 | 压裂液黏度 /mPa·s | 增黏 倍数 |
---|---|---|---|---|
CO2 | 0 | 22727 | 0.048 | — |
CO2+PMSQ | 1 | 7818 | 0.313 | 6.5 |
2 | 6723 | 0.437 | 9.1 | |
3 | 5923 | 0.586 | 12.2 | |
CO2+PVAc | 1 | 19800 | 0.0576 | 1.2 |
2 | 15336 | 0.0768 | 1.6 | |
3 | 9589 | 0.146 | 3.0 | |
CO2+PMSQ-VAc | 1 | 5927 | 2.299 | 47.9 |
2 | 2435 | 3.172 | 66.1 | |
3 | 3041 | 3.659 | 76.2 | |
CO2+PFOA | 1 | 14138 | 0.0816 | 1.7 |
2 | 10438 | 0.1248 | 2.6 | |
3 | 8803 | 0.1632 | 3.4 | |
CO2+PS | 1 | 17815 | 0.072 | 1.5 |
2 | 11406 | 0.1104 | 2.3 | |
3 | 8771 | 0.1584 | 3.3 | |
CO2+PolyFAST | 1 | 1008 | 10.615 | 221.1 |
2 | 312 | 12.816 | 267.0 | |
3 | 237 | 15.202 | 316.7 |
增黏剂 | 管径/ mm | CO2流动压差 /kPa | 压裂液流动压差/kPa | 阻力 系数 |
---|---|---|---|---|
PMSQ | 6 | 4.7 | 25.7 | 5.47 |
PVAc | 6 | 4.7 | 7.0 | 1.49 |
PMSQ-VAc | 6 | 4.7 | 80.9 | 17.21 |
PFOA | 6 | 4.8 | 10.3 | 2.15 |
PS | 6 | 4.7 | 12.6 | 2.68 |
PolyFAST | 6 | 4.7 | 152.3 | 32.40 |
PMSQ | 10 | 4.2 | 19.2 | 4.57 |
PVAc | 10 | 4.3 | 5.5 | 1.28 |
PMSQ-VAc | 10 | 4.2 | 49.5 | 11.79 |
PFOA | 10 | 4.2 | 7.7 | 1.83 |
PS | 10 | 4.3 | 8.2 | 1.91 |
PolyFAST | 10 | 4.2 | 108.2 | 25.76 |
PMSQ | 14 | 3.6 | 11.4 | 3.17 |
PVAc | 14 | 3.5 | 4.4 | 1.26 |
PMSQ-VAc | 14 | 3.6 | 21.4 | 5.94 |
PFOA | 14 | 3.6 | 6.2 | 1.72 |
PS | 14 | 3.5 | 7.5 | 2.14 |
PolyFAST | 14 | 3.5 | 65.8 | 18.80 |
增黏剂 | 管径/ mm | CO2流动压差 /kPa | 压裂液流动压差/kPa | 阻力 系数 |
---|---|---|---|---|
PMSQ | 6 | 4.7 | 25.7 | 5.47 |
PVAc | 6 | 4.7 | 7.0 | 1.49 |
PMSQ-VAc | 6 | 4.7 | 80.9 | 17.21 |
PFOA | 6 | 4.8 | 10.3 | 2.15 |
PS | 6 | 4.7 | 12.6 | 2.68 |
PolyFAST | 6 | 4.7 | 152.3 | 32.40 |
PMSQ | 10 | 4.2 | 19.2 | 4.57 |
PVAc | 10 | 4.3 | 5.5 | 1.28 |
PMSQ-VAc | 10 | 4.2 | 49.5 | 11.79 |
PFOA | 10 | 4.2 | 7.7 | 1.83 |
PS | 10 | 4.3 | 8.2 | 1.91 |
PolyFAST | 10 | 4.2 | 108.2 | 25.76 |
PMSQ | 14 | 3.6 | 11.4 | 3.17 |
PVAc | 14 | 3.5 | 4.4 | 1.26 |
PMSQ-VAc | 14 | 3.6 | 21.4 | 5.94 |
PFOA | 14 | 3.6 | 6.2 | 1.72 |
PS | 14 | 3.5 | 7.5 | 2.14 |
PolyFAST | 14 | 3.5 | 65.8 | 18.80 |
1 | 赵万金, 李海亮, 杨午阳 . 国内非常规油气地球物理勘探技术现状及进展[J]. 中国石油勘探, 2012, 17(4): 36-40. |
ZHAO W J , LI H L , YANG W Y . Current status and progress of domestic unconventional oil and gas geophysical exploration technologies[J]. China Petroleum Exploration, 2012, 17(4): 36-40. | |
2 | 赵群, 王红岩, 刘人和, 等 . 世界页岩气发展现状及我国勘探前景[J]. 天然气技术与经济, 2008(3):11-14. |
ZHAO Q , WANG H Y , LIU R H , et al . Development status of world shale gas and exploration prospects in China[J]. Natural Gas Technology and Economy, 2008(3):11-14. | |
3 | 赵志恒, 李晓, 张搏, 等 . 超临界二氧化碳无水压裂新技术实验研究展望[J]. 天然气勘探与开发, 2016, 39(2):58-63. |
ZHAO Z H , LI X , ZHANG B , et al . Prospect of experimental research on new technology of supercritical carbon dioxide waterless fracturing [J]. Natural Gas Exploration and Development, 2016, 39(2):58-63. | |
4 | 彭成勇 . 页岩油气水平井压裂工艺技术展望[J]. 天然气勘探与开发, 2014, 37(1):68-71. |
PENG C Y . Prospect of fracturing technology for shale gas horizontal wells[J]. Natural Gas Exploration and Development, 2014, 37(1):68-71. | |
5 | 孙张涛, 吴西顺 . 页岩气开采中的水力压裂与无水压裂技术[J]. 国土资源情报, 2014(5): 51-55. |
SUN Z T , WU X S . Hydraulic fracturing and waterless fracturing technology in shale gas mining[J]. Land and Resources Information, 2014(5): 51-55. | |
6 | 肖博, 张士诚, 张健, 等 . CO2增黏剂研究述评[J]. 西安石油大学学报(自然科学版), 2014, 29(4): 78-83. |
XIAO B , ZHANG S C , ZHANG J , et al . Review of CO2 tackifier research[J]. Journal of Xi’an Shiyou University (Natural Science), 2014, 29(4): 78-83. | |
7 | 刘巍 . 超临界CO2增黏剂研究进展[J]. 断块油气田,2012, 19(5): 658-661. |
LIU W . Research progress of supercritical CO2 tackifiers[J]. Fault Block Oil & Gas Field, 2012, 19(5): 658-661. | |
8 | 黄洲 . 二氧化碳增黏剂的制备及其压裂性能评价[D]. 成都:西南石油大学, 2017. |
HUANG Z . Preparation of carbon dioxide thickener and evaluation of its fracturing performance[D]. Chengdu:Southwest Petroleum University,2017. | |
9 | 孙宝江, 孙文超 . 超临界CO2增黏机制研究进展及展望[J]. 中国石油大学学报(自然科学版), 2015(3): 76-83. |
SUN B J , SUN W C . Research progress and prospects of supercritical CO2 viscosification mechanism[J]. Journal of China University of Petroleum (Natural Science). 2015(3): 76-83. | |
10 | 崔伟香, 舒玉华, 崔明月, 等 . 液态CO2增稠压裂液流变性能分析[J]. 油田化学, 2017, 34(2):250-254. |
CUI W X , SHU Y H , CUI M Y , et al . Rheological analysis of liquid CO2 thickening fracturing fluid[J]. Oil Field Chemistry, 2017, 34(2):250-254. | |
11 | 崔伟香, 邱晓惠 . 100%液态CO2增稠压裂液流变性能[J]. 钻井液与完井液, 2016, 33(2): 101-105. |
CUI W X , QIU X H . Rheological of 100% liquid CO2 thickening fracturing fluid[J]. Drilling Fluid and Completion Fluid,2016, 33(2): 101-105. | |
12 | KUMAR S K , JOHNSTON K P . Modelling the solubility of solids in supercritical fluids with density as the independent variable[J]. Journal of Supercritical Fluids,2015,1(1):15-22. |
13 | LEI H . Identification, design and synthesis of oxygenated hydrocarbon-based carbon dioxide-soluble polymers for chemical and petroleum engineering applications[D]. Pittsburgh: University of Pittsburgh, 2006. |
14 | BRAY C L , TAN B , WOOD C D , et al . High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide[J]. Journal of Materials Chemistry,2005,15(4):456-459. |
15 | BAYRAKTAR Z , KIRAN E . Miscibility, phase separation, and volumetric properties in solutions of poly(dimethylsiloxane) in supercritical carbon dioxide[J]. Journal of Applied Polymer Science, 2015, 75(11): 1397-1403. |
16 | KILIC S , MICHALIK S , WANG Y , et al . Effect of grafted Lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2 [J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6415-6424. |
17 | ROSE A B S , MARCENEIRO S , BRAGA M E M , et al . Solubility of all-trans, retinoic acid in supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2015, 98:70-78. |
18 | 曹晓萌 . 渝东南下寒武统牛蹄塘组黑色页岩储层特征及主控因素[D]. 北京:中国地质大学(北京), 2014. |
CAO X M . Reservoir characteristics their controlling factors of the lower cambrian niutitang formation black shales in southeast Chongqing[D]. Beijing:China University of Geosciences (Beijing),2014. | |
19 | WANG Yang . Molecular modeling applied to CO2-soluble molecules and confined fluids[D]. Commonwealth,Pennsylvania: University of Pittsburgh, 2006. |
20 | 沈爱国, 刘金波, 佘跃惠, 等 . CO2潜在增黏剂苯乙烯乙酸乙烯酯二元共聚物的设计与合成[J]. 石油天然气学报, 2011, 33(2): 131-134. |
SHEN A G , LIU J B , SHE Y H , et al . Design and synthesis of CO2 potential adhesion styrene vinyl acetate binary copolymer[J]. Journal of Oil and Gas Technology, 2011, 33(2): 131-134. | |
21 | 孙少俊 . 亲CO2聚乙酸乙烯基聚合物的设计与合成[D]. 上海:华东理工大学, 2015. |
SUN S J . Design and synthesis of pro-CO2 polyvinyl acetate polymer [D]. Shanghai:East China University of Science and Technology,2015. | |
22 | 沈爱国, 刘金波, 佘跃惠, 等 . CO2增黏剂聚乙酸乙烯酯-甲基倍半硅氧烷的合成[J]. 高分子材料科学与工程, 2011, 27(11): 157-159. |
SHEN A G , LIU J B , SHE Y H , et al . Synthesis of CO2 tackifier polyvinyl acetate-methyl silsesquioxane[J]. Polymer Materials Science & Engineering, 2011, 27(11): 157-159. | |
23 | HEIDARYAN E , HATAMI T , RAHIMI M , et al . Viscosity of pure carbon dioxide at supercritical region: measurement and correlation approach[J]. Journal of Supercritical Fluids, 2011, 56(2):144-151. |
24 | TERRY R E , ZAID A , ANGELOS C ,et al . Polymerization in supercritical CO2 to improve CO2/oil mobility ratios[R].SPE 16270,1987. |
25 | GULLAPALLI P , TSAU J S , HELLER J P . Gelling behavior of 12-hydroxystearic acid in organic fluids and dense CO2 [C] //International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1995:349-361. |
26 | 黄洲, 周明, 王刚, 等 . 液态CO2增稠剂的研究现状[J]. 现代化工, 2016, 36(10): 25-28. |
HUANG Z , ZHOU M , WANG G , et al . Research status of liquid CO2 thickeners[J]. Modern Chemical Industry, 2016, 36(10): 25-28. | |
27 | KIKIC I , VECCHIONE F , ALESSI P , et al . Polymer plasticization using supercritical carbon dioxide: experiment and modeling[J]. Industrial & Engineering Chemistry Research, 2003, 42(13):3022-3029. |
28 | 王鉴, 张楠, 武芹, 等 . 超临界CO2溶解性能的研究进展[J]. 炼油与化工, 2011, 22(5): 1-5. |
WANG J , ZHANG N , WU Q , et al . Research progress of supercritical CO2 solubility[J]. Refinery and Chemical Industry, 2011, 22(5): 1-5. | |
29 | FRANKEN H H , KNOETZE J H , SCHWARZ C E . High-pressure binary phase equilibria, density and dynamic viscosity of 100 & 200cSt polydimethylsiloxane (PDMS) with supercritical CO2 [J]. Journal of Supercritical Fluids, 2018,139:1-7. |
30 | FERNANDO J G , VEQUIZO R M , ODARVE M K G , et al . Effect of supercritical carbon dioxide treatment on the polarons of HCl-doped polyaniline films[J]. Physica Status Solidi, 2015, 12(6):576-579. |
[1] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[2] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[3] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[4] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[5] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[6] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[7] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[8] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[9] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[10] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[11] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[14] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[15] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |