Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 2003-2010.DOI: 10.16085/j.issn.1000-6613.2018-1459
• Resources and environmental engineering • Previous Articles Next Articles
Ru WANG1,2(),Zhiguo ZHAO1,2,Ping ZHENG3,Linjiang YUAN1,2()
Received:
2018-07-16
Revised:
2018-09-06
Online:
2019-04-05
Published:
2019-04-05
Contact:
Linjiang YUAN
通讯作者:
袁林江
作者简介:
王茹(1989—),女,博士,讲师,研究方向为废水生物处理技术。E-mail:<email>R.Wang@xauat.edu.cn</email>。|袁林江,教授,博士生导师,研究方向为废水生物处理理论与技术。E-mail:<email>yuanlinjiang@xauat.edu.cn</email>。
基金资助:
CLC Number:
Ru WANG, Zhiguo ZHAO, Ping ZHENG, Linjiang YUAN. Iron-dependent denitrification, a novel technology to remove nitrogen from wastewaters[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2003-2010.
王茹, 赵治国, 郑平, 袁林江. 铁型反硝化:一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(04): 2003-2010.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1459
1 | 中华人民共和国生态环保部 . 2015年环境统计年报[R]. 北京, 2017. |
Ministry of Ecological and Environmental Protection of the People's Republic of China . Annual Report of Environment Statistics 2015[R]. Beijing, 2017. | |
2 | KHIN T , ANNACHHATRE A P .Novel microbial nitrogen removal processes[J]. Biotechnol Adv., 2004,22(7): 519-532. |
3 | JETTEN M SM , LOGEMANN S , MUYZER G . Novel principles in the microbial conversion of nitrogen compounds[J]. Antonie van Leeuwenhoek,1997,71: 75−93. |
4 | 郑平, 冯孝善 . 废物生物处理[M]. 北京: 高等教育出版社, 2006: 379−383. |
ZHENG P , FENG X S . Biological treatment of waste[M]. Beijing: Press of Higher Education, 2006: 379-383. | |
5 | 郑平, 徐向阳, 胡宝兰 . 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004: 55−65. |
ZHENG P , XU X Y , HU B L . New biological nitrogen removal theory and technology[M]. Beijing: Science Press,2004: 5565. | |
6 | 王茹 . 铁型脱氮技术及其微生物学特性研究[D]. 杭州: 浙江大学, 2017. |
WANG R . Ferrous-dependent nitrate reduction technology and its microbial characteristics[D]. Hangzhou: Zhejiang University, 2017. | |
7 | KANAPARTHI D , POMMERENKE B , CASPER P , et al . Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3[J]. ISME Journal, 2013, 7(8): 1582-1594. |
8 | 左莉娜, 贺前锋 . 酸性矿山废水的治理技术现状及进展[J]. 环境工程, 2013, 31(5): 35-38. |
ZUO L N , HE Q F . The state-of-art and progress of the treatementwechnology for acid mine wastewater[J]. Environmental Engineering, 2013(5): 35-38. | |
9 | STRAUB K L , BENZ M , SCHINK B , et al . Anaerobic,nitrate-dependent microbial oxidation of ferrous iron[J]. Appl. Environ. Microb., 1996, 62(4): 1458-1460. |
10 | STRAUB K L , BUCHHOLZ-CLEVEN B E . Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Appl. Environ. Microb. ,1998, 64(12): 4846-4856. |
11 | STRAUB K L , SCHONHUBER W , BUCHHOLZ-CLEVEN B E . Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independsent iron cycling[J]. Geomicrobiol J., 2004, 21(6): 371-378. |
12 | 王茹, 郑平, 张萌, 等 . 硝酸盐型厌氧铁氧化菌的种类、分布和特性[J]. 微生物学通报, 2015, 42(12): 2448-2456. |
WANG R , ZHENG P , ZHANG M ,et al . Nitrate-dependent anaerobic ferrous/iron oxidation microorganism:review on its species, distribution and characteristics[J]. Microbiology Bulletins, 2015, 42(12): 2448-2456. | |
13 | KUMARASWAMY R , SJOLLEMA K , KUENEN G , et al . Nitrate-dependent [Fe(Ⅱ) EDTA] 2−oxidation by Paracoccusferrooxidans sp. nov., isolated from a denitrifying bioreactor[J]. Systematic and Applied Microbiology,2006, 29(4): 276-286. |
14 | KAPPLER A , SCHINK B , NEWMAN D K . Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1 [J]. Geobiology, 2005, 3(4): 235-245. |
15 | KANAPARTHI D , POMMERENKE B , CASPER P ,et al . Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3 [J]. ISME Journal,2013,7(8):1582-94. |
16 | HAFENBRADL D , KELLER M , DIRMEIER R , et al . Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilicarchaeum that oxidizes Fe2+ at neutral pH under anoxic conditions[J]. Archives of Microbiology, 1996, 166(5): 308-314. |
17 | HAUCK S , BENZ M , BRUNE A . Ferrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance)[J]. FEMS Microbiol Ecol., 2001, 37(2): 127-134. |
18 | HEGLER F , LOSEKANN-BEHRENS T , HANSELMANN K , et al . Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring[J]. Appl. Environ. Microbiol., 2012, 78(20): 7185-7196. |
19 | JORGENSEN C J , JACOBSEN O S , ELBERLING B . Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environ. Sci. Technol., 2009, 43(13): 4851-4857. |
20 | ZHANG M , ZHENG P , LI W ,et al . Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. |
21 | WANG R , YANG C , ZHANG M ,et al . Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701. |
22 | WEBER K A , HEDRICK D B , PEACOCK A D , at et . Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology and Biotechnology, 2009, 83(3): 555-565. |
23 | SHELOBOLINA E , XU H ,KONISHIH,et al . Microbial lithotrophic oxidation of structural Fe(Ⅱ) in biotite[J]. Applied and Environmental Microbiology, 2012, 78(16): 746-5752. |
24 | LIU H B , CHEN Z H , GUAN Y N , et al . Role and application of iron in water treatment for nitrogen removal: a review[J]. Chemosphere, 2018, 204: 51-62. |
25 | ZHAO L , DONG H , KUKKADAPU R ,et al . Biological oxidation of Fe(Ⅱ) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. strain 2002[J]. Geochimica et Cosmochimica Acta, 2013, 119: 231-247. |
26 | BISWAS S , BOSE P . Zero-valent iron-assisted autotrophic denitrification[J]. Journal of Environmental Engineering,2005,131(8): 1212-1220. |
27 | CARLSON H K , CLARK I C , MELNYK R A ,et al . Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification[J]. Frontiers in Microbiology, 2012, 3(57): 1-7. |
28 | MUEHE E M , GERHARDT S , SCHINK B , et al . Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains of nitrate reducing bacteria[J]. FEMS Microbiology Ecology,2009,70(3):335-343. |
29 | BIRD L J , BONNEFOY V , NEWMAN D K . Bioenergetic challenges of microbial iron metabolisms[J]. Trends in Microbiology, 2011,19(7),330-340. |
30 | FERGUSON S J , INGLEDEW W J . Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: Ⅰ. Acidithiobacillusferrooxidans as a paradigm[J]. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 2008, 1777(12): 1471-1479. |
31 | KRAFT B , STROUS M , TEGETMEYER H E . Microbial nitrate respiration-genes, enzymes and environmental distribution[J]. Journal of Biotechnology, 2011, 155(1): 104-117. |
32 | ZHOU J , WANG H , YANG K ,et al . Nitrate removal by nitrate-dependent Fe(Ⅱ) oxidation in an upflowdenitrifying biofilm reactor[J]. Water Science and Technology, 2015, 72(3): 377-383. |
33 | ZHOU J , WANG H , YANG K . et al . Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
34 | ZHANG X , LI A , SZEWZYK U . Improvement of biological nitrogen removal with nitrate-dependent Fe(Ⅱ) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment[J]. Bioresource Technology, 2016, 219: 624-631. |
35 | ZHANG M , ZHENG P , LI W , et al . Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process:anovelprospective technology for autotrophic denitrification[J]. Bioresource Technology,2015,179: 543-548. |
36 | OSHIKI M , ISHII S , YOSHIDA K , et al . Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria[J]. Applied and Environmental Microbiology, 2013,79(13): 4087-4093. |
37 | BLOTHE M , RODEN E . Composition and activity of an autotrophic Fe(Ⅱ)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology,2009,75(21): 6937-6940. |
38 | CHAUDHURI S K , LACK J G , COATES J D . Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ)[J]. Applied and Environmental Microbiology, 2001, 67(6): 2844-2848. |
39 | LI B , TIAN C , ZHANG D , et al . Anaerobic nitrate-dependent iron (Ⅱ) oxidation by a novel autotrophic bacterium,Citrobacterfreundii strain PXL1[J]. Geomicrobiology Journal, 2014, 31(2): 138-144. |
40 | WEBER K A , POLLCK J , COLE K A , et al . Anaerobic nitrate-dependent iron (Ⅱ) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002[J]. Applied and Environmental Microbiology,2006,72(1): 686-694. |
41 | MARJORIE ETIQUE F P A , JORAND A Z , BRIAN G C D , et al . Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental Science & Technology, 2014, 48(7): 3742-3751. |
42 | WANG R , ZHENG P , ZHANG M ,et al . Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: a promising way for promotion of chemoautotrophic denitrification[J]. Bioresource Technology, 2015, 197: 410-415. |
43 | ZHOU J , WANG H , YANG K ,et al . Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
44 | SHEN D S , LI W B , YAO J ,et al . Microbial-mediated anaerobic oxidation of ferrous iron and its mechanism to remediate contaminated environments[J]. Journal of Zhejiang University, 2011, 37(1): 112-118. |
45 | WANG R , ZHENG P , XING Y . et al . Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture[J]. J. Ind. Microbiol. Biotechno. , 2014, 41(5): 803-809. |
46 | ZHANG M , ZHENG P , WANG R , et al . Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology[J]. Chemosphere, 2014, 117: 604-609. |
47 | 张萌 . 新型铁盐脱氮除磷技术的研究[D]. 杭州: 浙江大学, 2015. |
ZHANG M . Novel iron-dependent technology for nitrate and phosphorus removal[D]. Hangzhou: Zhejiang University, 2015. | |
48 | DE G C, CARAVELLI A H , ZARITZKY N E . Performance and biological isndicators of a laboratory-scale activated sludge reactor with phosphate simultaneous precipitation as affected by ferric chloride addition[J]. Chemical Engineering Journal,2010,165(2): 607-616. |
49 | 李娜, 孙竹梅, 阮福辉, 等 . 三氯化铁除砷(Ⅲ)机理[J]. 化工学报,2012, 63(7): 2224-2228. |
LI N , SUN Z M , RUAN F H , et al . Mechanism of removing arsenic (Ⅲ) from ferric chloride[J]. CIESC Journal, 2012, 63(7): 2224-2228. | |
50 | 王谦, 李延, 孙平, 等 . 含铬废水处理技术及研究进展[J]. 环境科学与技术, 2013, 36(12): 150-156. |
WANG Q , LI Y , SUN P ,et al . The treatment technology and research progress of hexavalent chromium-containing wastewater[J]. Environmental Science and Technology, 2013, 36(12): 150-156. | |
51 | 周玲玲, 张永吉, 孙丽华, 等 . 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5):1187-1191. |
ZHOU L L , ZHANG Y J , SUN L H , et al . Characteristic of natural organic matter removal by ferric and aluminium coagulation[J]. Environmental Science, 2008, 29(5): 1187-1191. | |
52 | 杨雪, 张景成, 关小红 . 新生态铁的混凝作用探索[J]. 环境科学,2012, 33(4): 1221-1226. |
YANG X , ZHANG J C , GUAN X H . Exploration of newly-formed ferric as the coagulant[J]. Environmental Science, 2012, 33(4): 1221-1226. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Min, MAO Yuhong, CHEN Chao, BAI Dan. Progress on the toxicity, morphology and control of aluminum salt hydrolysates in water treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 479-488. |
[3] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[4] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[5] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[6] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[7] | WANG Shuyan, ZHANG Xinbo, PENG Anping, LIU Yang, HAO NGO HUU, GUO Wenshan, WEN Haitao. Research progress and challenges in recovery of nitrogen and phosphorus nutrients from water by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5459-5469. |
[8] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
[9] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[10] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[11] | YANG Jing, LI Bo, LI Wenjun, LIU Xiaona, TANG Liuyuan, LIU Yue, QIAN Tianwei. Degradation of naphthalene by degrading bacteria isolated from coking contaminated sites [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4351-4361. |
[12] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |