Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 111-121.DOI: 10.16085/j.issn.1000-6613.2018-1157
• Chemical processes and equipment • Previous Articles Next Articles
Min WANG(),Yingya WU,Xiaogang SHI,Xingying LAN(),Jinsen GAO
Received:
2018-05-30
Revised:
2018-09-30
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xingying LAN
通讯作者:
蓝兴英
作者简介:
王敏(1992—),女,博士研究生,研究方向为气固两相流。E-mail:<email>cupwangmin@163.com</email>。|蓝兴英,教授,博士生导师,研究方向为重质油加工及计算化学工程。E-mail:<email>lanxy@cup.edu.cn</email>。
基金资助:
CLC Number:
Min WANG, Yingya WU, Xiaogang SHI, Xingying LAN, Jinsen GAO. Review of full-loop simulation of gas-solid circulating fluidized bed[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 111-121.
王敏, 吴迎亚, 石孝刚, 蓝兴英, 高金森. 气固循环流化床全回路数值模拟研究进展[J]. 化工进展, 2019, 38(01): 111-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1157
作者 | 年份 | 模拟对象 | 颗粒类型 | 多相流模型 | 曳力模型 | 固相应力模型 |
---|---|---|---|---|---|---|
Zhang等[ | 2008 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Liu等[ | 2010 | 50MWe CFB锅炉 | B | TFM | Gidaspow | KTGF 摩擦应力 |
Zhang等[ | 2010 | 150MWe CFB锅炉 | B | TFM | EMMS | KTGF |
张楠等[ | 2010 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Wang等[ | 2011 | 化学链燃烧(CLC)装置 | B | TFM | Gidaspow | KTGF |
Wang等[ | 2011 | 高密度循环流化床(HDCFB)装置 | B | TFM | Revised EMMS | KTGF |
Nguyen等[ | 2012 | CFB 气化炉 | B | TFM | Gidaspow | KTGF |
Dietiker等[ | 2013 | CFB装置 | B | TFM | Gidaspow | — |
Lu等[ | 2013 | 工业级CFB锅炉 | B | MFM | EMMS Gidaspow | KTGF |
Nikolopoulos等[ | 2013 | CFB 碳酸化器 | B | TFM | EMMS Gidaspow | KTGF 摩擦应力 |
霍荥等[ | 2013 | 中试CFB装置 | A | TFM | EMMS | — |
王雪瑶等[ | 2013 | CFB装置 | B | TFM | EMMS | KTGF |
Li等[ | 2014 | NETL中试CFB装置 | B | TFM | Gidaspow | KTGF |
Geng等[ | 2015 | CLC装置 | B | TFM | Syamlal–O’Brien | KTGF |
Liu等[ | 2015 | CFB装置 | A | TFM | EMMS /Matrix | KTGF |
Guan等[ | 2014 | CLC装置 | B | TFM | Gidaspow | KTGF |
Su等[ | 2015 | CLC装置 | B | TFM | Gidaspow | KTGF |
Guan等[ | 2016 | CLC装置 | B | TFM | Gidaspow | KTGF |
作者 | 年份 | 模拟对象 | 颗粒类型 | 多相流模型 | 曳力模型 | 固相应力模型 |
---|---|---|---|---|---|---|
Zhang等[ | 2008 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Liu等[ | 2010 | 50MWe CFB锅炉 | B | TFM | Gidaspow | KTGF 摩擦应力 |
Zhang等[ | 2010 | 150MWe CFB锅炉 | B | TFM | EMMS | KTGF |
张楠等[ | 2010 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Wang等[ | 2011 | 化学链燃烧(CLC)装置 | B | TFM | Gidaspow | KTGF |
Wang等[ | 2011 | 高密度循环流化床(HDCFB)装置 | B | TFM | Revised EMMS | KTGF |
Nguyen等[ | 2012 | CFB 气化炉 | B | TFM | Gidaspow | KTGF |
Dietiker等[ | 2013 | CFB装置 | B | TFM | Gidaspow | — |
Lu等[ | 2013 | 工业级CFB锅炉 | B | MFM | EMMS Gidaspow | KTGF |
Nikolopoulos等[ | 2013 | CFB 碳酸化器 | B | TFM | EMMS Gidaspow | KTGF 摩擦应力 |
霍荥等[ | 2013 | 中试CFB装置 | A | TFM | EMMS | — |
王雪瑶等[ | 2013 | CFB装置 | B | TFM | EMMS | KTGF |
Li等[ | 2014 | NETL中试CFB装置 | B | TFM | Gidaspow | KTGF |
Geng等[ | 2015 | CLC装置 | B | TFM | Syamlal–O’Brien | KTGF |
Liu等[ | 2015 | CFB装置 | A | TFM | EMMS /Matrix | KTGF |
Guan等[ | 2014 | CLC装置 | B | TFM | Gidaspow | KTGF |
Su等[ | 2015 | CLC装置 | B | TFM | Gidaspow | KTGF |
Guan等[ | 2016 | CLC装置 | B | TFM | Gidaspow | KTGF |
作者 | 年份 | 模拟对象 | 颗粒类型 | 颗粒数 | 多相流 模型 | 曳力模型 |
---|---|---|---|---|---|---|
Chu等[ | 2008 | CFB装置 | D | 2×104 | DEM | Di Felice |
Luo等[ | 2015 | CFB装置 | D | 2×105 | DEM | Gidaspow |
Luo等[ | 2015 | CFB装置 | D | 9.2×104 | DEM | Gidaspow |
Xie等[ | 2015 | 工业级CFB锅炉 | — | — | DEM | — |
Wang等[ | 2017 | CFB装置(6个旋分) | D | 9×105 | DEM | Gidaspow |
Wang等[ | 2017 | 双侧返料循环流化床(DRCFB)装置 | D | 3×105 | DEM | Gidaspow |
Wang等[ | 2017 | CFB装置 | D | 9×103 | DEM | Gidaspow |
Xu等[ | 2017 | CFB装置 | D | — | DEM | BVK, Gidaspow, Hill-Koch-Ladd, and Wen and Yu |
Jiang等[ | 2014 | CFB装置(6个旋分) | B | — | CPFD | Wen-Yu/ Ergun |
Parker[ | 2014 | CLC装置 | B | — | CPFD | — |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu, Wen-Yu/Ergun, Ganser |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu/ Ergun |
殷上轶等[ | 2016 | HDCFB装置 | B | — | CPFD | Gidaspow |
Tu等[ | 2018 | 中试CFB装置 | B | — | CPFD | EMMS |
作者 | 年份 | 模拟对象 | 颗粒类型 | 颗粒数 | 多相流 模型 | 曳力模型 |
---|---|---|---|---|---|---|
Chu等[ | 2008 | CFB装置 | D | 2×104 | DEM | Di Felice |
Luo等[ | 2015 | CFB装置 | D | 2×105 | DEM | Gidaspow |
Luo等[ | 2015 | CFB装置 | D | 9.2×104 | DEM | Gidaspow |
Xie等[ | 2015 | 工业级CFB锅炉 | — | — | DEM | — |
Wang等[ | 2017 | CFB装置(6个旋分) | D | 9×105 | DEM | Gidaspow |
Wang等[ | 2017 | 双侧返料循环流化床(DRCFB)装置 | D | 3×105 | DEM | Gidaspow |
Wang等[ | 2017 | CFB装置 | D | 9×103 | DEM | Gidaspow |
Xu等[ | 2017 | CFB装置 | D | — | DEM | BVK, Gidaspow, Hill-Koch-Ladd, and Wen and Yu |
Jiang等[ | 2014 | CFB装置(6个旋分) | B | — | CPFD | Wen-Yu/ Ergun |
Parker[ | 2014 | CLC装置 | B | — | CPFD | — |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu, Wen-Yu/Ergun, Ganser |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu/ Ergun |
殷上轶等[ | 2016 | HDCFB装置 | B | — | CPFD | Gidaspow |
Tu等[ | 2018 | 中试CFB装置 | B | — | CPFD | EMMS |
1 | 金涌 . 流态化工程原理[M]. 北京:清华大学出版社, 2002: 2. |
JING Y . Principles of fluidization engineering[M]. Beijing: Tsinghua University Press, 2002: 2. | |
2 | 李佑楚, 陈丙瑜, 王凤鸣, 等 . 快速流态化的流动[J]. 化工学报, 1979, 30(2): 143-152. |
LI Y C , CHEN B Y , WANG F M , et al . The dynamics of fast fluidization[J]. Journal of Chemical Industry and Engineering(China), 1979, 30(2): 143-152. | |
3 | 郭慕孙, 李洪钟 . 流态化手册[M]. 北京: 化学工业出版社, 2008: 897-1385. |
GUO M S , LI H Z . Handbook of fluidization[M]. Beijing: Chemical Industry Press, 2008: 897-1385. | |
4 | LEWIS W K , GILLIL E R . Characteristics of the internally circulating fluidized bed boiler[J]. Ind. Eng. Chem., 1979, 41(6): 1104-1110. |
5 | 许友好 . 催化裂化化学与工艺[M]. 北京: 科学出版社, 2013:383-385. |
XU Y H . Chemistry & process of catalytic cracking[M]. Beijing: Science Press, 2013: 383-385. | |
6 | LAN X Y , XU C M , WANG G , et al . CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors[J]. Chemical Engineering Science, 2009, 64: 3847-3858. |
7 | LU B N , WANG W , LI J H . Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
8 | SAMRUAMPHIANSKUN T , PIUMSOMBOON P , CHALERMSINSUWAN B . Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis[J]. Chemical Engineering Journal, 2012, 210(4): 237-251. |
9 | RODRIGUES S S , FORRET A , MONTJOVET F , et al . CFD modeling of riser with group B particles[J]. Powder Technology, 2015, 283: 519-529. |
10 | SHI X G , WU Y Y , LAN X Y , et al . Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach[J]. Powder Technology, 2015, 284: 130-142. |
11 | MASNADI M S , GRACE J R , ELYASI S , et al . Distribution of multi-phase gas–solid flow across identical parallel cyclones: modeling and experimental study[J]. Separation & Purification Technology, 2010, 72(1): 48-55. |
12 | ZHANG N , LU B N , WANG W , et al . Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed[J]. Particuology, 2008, 6(6): 529-539. |
13 | LIU G D , LU H L , JACQUES B , et al . Computations of fluid dynamics of a 50 MWe circulating fluidized bed combustor[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5132-5140. |
14 | ZHANG N , LU B , WANG W , LI J . 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler[J]. Chemical Engineering Journal, 2010, 162(2): 821-828. |
15 | 张楠 . 基于EMMS的介尺度传质模型及其在循环流化床锅炉燃烧模拟中的应用[D]. 北京: 中国科学院过程工程研究所, 2010. |
ZHANG N . EMMS-based meso-scale mass transfer model and its application to circulating fluidized bed combustion simulation[D]. Beijing: Chinese Academy of Sciences, 2010. | |
16 | WANG S , LIU G D , LU H L , et al . Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds[J]. Fuel Processing Technology, 2011, 92(3): 385-393. |
17 | WANG X , JIANG F , LEI J , et al . A revised drag force model and the application for the gas–solid flow in the high-density circulating fluidized bed[J]. Applied Thermal Engineering, 2011, 31(14/15): 2254-2261. |
18 | NGUYEN T , SEO M , LIM Y , et al . CFD simulation with experiments in a dual circulating fluidized bed gasifier[J]. Computers & Chemical Engineering, 2012, 36: 48-56. |
19 | DIETIKER J , LI T , GARG R , et al . Cartesian grid simulations of gas–solids flow systems with complex geometry[J]. Powder Technology, 2013, 235: 696-705. |
20 | LU B , ZHANG N , WANG W , et al . 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler[J]. AIChE Journal, 2013, 59(4): 1108-1117. |
21 | NIKOLOPOULOS A , NIKOLOPOULOS N , CHARITOS A , et al . High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chemical Engineering Science, 2013, 90: 137-150. |
22 | 霍蒙, 张楠, 孟凡勇, 等 . 基于EMMS的循环流化床三维全循CFD模拟[J]. 计算机与应用化学, 2013(3): 223-228. |
HUO M , ZHANG N , MENG F Y , et al . EMMS-based 3D full-loop CFD simulation of a circulating fluidized bed[J].Computes and Applied Chemistry, 2013(3): 223-228. | |
23 | 王雪瑶, 雷福林, 吴学智, 等 . 循环流化床三维全循环模拟及实验验证[J]. 工程热物理学报, 2013, 34(7): 1287-1290. |
WANG X Y , LEI F L , WU X Z , et al . Three dimensional full-loop numerical simulation of a CFB and experimental verification[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1287-1290. | |
24 | LI T , J-F DIETIKER , SHADLE L . Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser[J]. Chemical Engineering Science, 2014, 120: 10-21. |
25 | GENG C , ZHONG W , SHAO Y , et al . Computational study of solid circulation in chemical-looping combustion reactor model[J]. Powder Technology, 2015, 276: 144-155. |
26 | LIU C , ZHAO M , WANG W , et al . 3D CFD simulation of a circulating fluidized bed with on-line adjustment of mechanical valve[J]. Chemical Engineering Science, 2015, 137: 646-655. |
27 | GUAN Y , CHANG J , ZHANG K , et al . Three-dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion[J]. Powder Technology, 2014, 268: 316-328. |
28 | SU M , ZHAO H , MA J . Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed[J]. Energy Conversion and Management, 2015, 105: 1-12. |
29 | GUAN Y , CHANG J , ZHANG K , et al . Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed[J]. Powder Technology, 2016, 289(4): 118-125. |
30 | CHU K W , YU A B . Numerical simulation of complex particle–fluid flows[J]. Powder Technology, 2008, 179(3): 104-114. |
31 | LUO K , WU F , YANG S , et al . High-fidelity simulation of the 3-D full-loop gas–solid flow characteristics in the circulating fluidized bed[J]. Chemical Engineering Science, 2015, 123: 22-38. |
32 | LUO K , YANG S , TAN J , et al . LES-DEM investigation of dense flow in circulating fluidized beds[J]. Procedia Engineering, 2015, 102: 1446-1455. |
33 | XIE J , ZHONG W Q , JIN B S . Eulerian-Lagrangian full-loop simulation of an industrial-scale circulating fluidized bed boiler[C]//APCChE 2015, Melbourne: Engineers Australia, 2015: 2592-2602. |
34 | WANG S , LUO K , HU C S , et al . CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed[J]. Chemical Engineering Science, 2017, 172: 199-215. |
35 | WANG S , LUO K , YANG S , et al . LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB[J]. Chemical Engineering Journal, 2017, 313: 858-872. |
36 | WANG S , LUO K , YANG S , et al . Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535. |
37 | XU Y P , MUSSER H , LI T W , et al . Numerical simulation and experimental study of the gas-solid flow behavior inside a full-loop circulating fluidized bed: evaluation of different drag models[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 740-750. |
38 | JIANG Y , QIU G , WANG H . Modelling and experimental investigation of the full-loop gas–solid flow in a circulating fluidized bed with six cyclone separators[J]. Chemical Engineering Science, 2014, 109: 85-97. |
39 | PARKER J . CFD model for the simulation of chemical looping combustion[J]. Powder Technology, 2014, 265: 47-53. |
40 | WANG Q , YANG H , WANG P , et al . Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I—Determination of modeling parameters[J]. Powder Technology, 2014, 253: 814-821. |
41 | WANG Q , YANG H , WANG P , et al . Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal. Part II—Investigation of solids circulation[J]. Powder Technology, 2014, 253: 822-828. |
42 | 殷上轶, 钟文琪, 金保昇, 等 . 高密度循环流化床三维全场数值模拟[J]. 工程热物理学报, 2016, V37(7): 1459-1463. |
YIN S Y , ZHONG W Q , JIN B S , et al . 3-D full-loop simulation of a high-density circulating fluidized bed[J]. Journal of Engineering Thermophysics, 2016, V37(7): 1459-1463. | |
43 | TU Q , WANG H . CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model[J]. Powder Technology, 2018, 323: 534-547. |
44 | WANG C , LI C , ZHU J . Axial solids flow structure in a high density gas–solids circulating fluidized bed downer[J]. Powder Technology, 2015, 272: 153-164. |
45 | 任立波 . 稠密颗粒两相流的CFD-DEM耦合并行算法及数值模拟[D]. 济南: 山东大学, 2015. |
REN L B . A parallel CFD-DEM coupling model and numerical simulation of dense particulate two-phase flows[D]. Jinan: Shandong University, 2015. | |
46 | SNIDER D M , CLARK S M , O'ROURKE P J . Eulerian-Lagrangian method for threedimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
47 | 张向阳 . 工业级流体颗粒系统分析软件Barracuda[J]. 智能制造, 2011(11): 29-32. |
ZHANG X Y . Industrial fluid particle system analysis software[J]. Intelligent Manufacturing, 2011(11): 29-32. | |
48 | LIANG Y , ZHANG Y , LI T , et al . A critical validation study on CPFD model in simulating gas–solid bubbling fluidized beds[J]. Powder Technology, 2014, 263: 121-134. |
49 | WANG J W . A review of eulerian simulation of geldart a particles in gas-fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 5567-5577. |
50 | RICHARDSON J F , ZAKI W N . Sedimentation and fluidization-part 1[J]. Transactions of the Institution of Chemical Engineers. 1954, 32: 35-53. |
51 | ERGUN S . Fluid Flow through packed columns[J]. Chemical Engineering Progress, 1952, 48: 89-94. |
52 | WEN C Y , YU Y H . Mechanics of fluidization[J]. American Institute of Chemical Engineers Symposium Series, 1966, 62: 100-111. |
53 | GIDASPOW D . Multiphase flow and fluidization[J]. Continuum & Kinetic Theory Description, 1994(95):1-29. |
54 | DING J , GIDASPOW D . A bubbling fluidization model using kinetic theory granular flow[J]. American Institute of Chemical Engineers, 1990, 36(4): 523-538. |
55 | FELICE R D . The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. |
56 | LU H L , SUN Q Q , HE Y R , et al . Numerical study of particle cluster flow in risers with cluster-based approach[J]. Chemical Engineering Science, 2005, 60(23): 6757-6767. |
57 | SYAMLAL M , O’BRIEN T J . Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow, 1988, 14(4): 473-481. |
58 | O’BRIEN T J , SYAMLAL M . Particle cluster effects in the numerical simulation of a circulating fluidized bed[C]//Proceedings of the Fourth International Conference on Circulating Fluidized Beds, 1993: 367-372. |
59 | WANG W , LI Y . Simulation of the clustering phenomenon in a fast fluidized bed: the importance of drag correlation[J]. Chinese Journal of Chemical Engineering, 2004, 12(3): 335-341. |
60 | CRUZ E , STEWARD F R , PUGSLEY T . New closure models for CFD modeling of high-density circulating fluidized beds[J]. Powder Technology, 2006, 169(3): 115-122. |
61 | ZIMMERMANN S , TAGHIPOUR F . CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
62 | ALMUTTAHAR A , TAGHIPOUR F . Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science, 2008, 63(6): 1696-1709. |
63 | LI T , POUGATCH K , SALCUDEAN M , et al . Numerical simulation of horizontal jet penetration in a three-dimensional fluidized bed[J]. Powder Technology, 2008, 184(1): 89-99. |
64 | SYAMLAL M , O'BRIEN T J . Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed[J]. AIChE Journal, 2003, 49(11): 2793-2801. |
65 | VEJAHATI F , MAHINPEY N , ELLIS N , et al . CFD simulation of gas–solid bubbling fluidized bed: a new method for adjusting drag law[J]. The Canadian Journal of Chemical Engineering, 2009, 87(1): 19-30. |
66 | ANDREWS IV A T , LOEZOS P N , SUNDARESAN S . Coarse-grid simulation of gas-particle flows in vertical risers[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6022-6037. |
67 | YE M . Multi-level modeling of dense gas-solid two-phase flows[M]. Netherlands: University of Twente, 2005. |
68 |
MCKEEN T , PUGSLEY T S . Simulation of cold flow FCC stripper hydrodynamics at small scale using computational fluid dynamics[J]. International Journal of Chemical Reactor Engineering, 2003, 1(1). DOI: org/10.2202/1542-6580.1034.
DOI URL |
69 | DAS S , PUGSLEY T , DELATOUR R . Three‐dimensional CFD model of the deaeration rate of FCC particles[J]. AIChE Journal, 2006, 52(7): 2391-2400. |
70 | LI T , POUGATCH K , SALCUDEAN M , et al . Numerical simulation of horizontal jet penetration in a three-dimensional fluidized bed[J]. Powder Technology, 2008, 184(1): 89-99. |
71 | ARASTOOPOUR H , GIDASPOW D . Analysis of IGT pneumatic conveying data and fast fluidization using a thermohydrodynamic model[J]. Powder Technology, 1979, 22(1): 77-87. |
72 | HOEF M A V D , KUIPERS J A M . Two-fluid modeling of Geldart A particles in gas-fluidized beds[J]. Particuology, 2008, 6(6): 540-548. |
73 | ZOU B , LI H , XIA Y , et al . Cluster structure in a circulating fluidized bed[J]. Powder technology, 1994, 78(2): 173-178. |
74 | SHUYAN W , ZHIHENG S , HUILIN L , et al . Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach[J]. Chemical Engineering Science, 2008, 63(16): 4116-4125. |
75 | MANYELE S V , PÄRSSINEN J H , ZHU J X . Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1): 151-161. |
76 | KARIMIPOUR S , MOSTOUFI N , SOTUDEH-GHAREBAGH R . Modeling the hydrodynamics of downers by cluster-based approach[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7204-7209. |
77 | NING Y , WEI W , WEI G , et al . Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561. |
78 | JENKINS J T , COWIN S C . Theories for flowing granular materials[C]//Mechanics Applied to the Transport of Bulk Materials. 1979. |
79 | GIDASPOW D . Multiphase Flow and Fluidization[J]. Continuum & Kinetic Theory Description, 1994, 95: 1-29. |
80 | SAVAGE S B . Analyses of slow high-concentration flows of granular materials[J]. Journal of Fluid Mechanics, 1998, 377: 1-26. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[3] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[4] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[10] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[11] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[12] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[13] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[14] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[15] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |