Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1297-1307.DOI: 10.16085/j.issn.1000-6613.2018-1114
Previous Articles Next Articles
Yingna CUI1,2(),Ming BAO1(),Changping LI3()
Received:
2018-05-29
Revised:
2018-10-10
Online:
2019-03-05
Published:
2019-03-05
Contact:
Ming BAO,Changping LI
通讯作者:
包明,李长平
作者简介:
基金资助:
CLC Number:
Yingna CUI,Ming BAO,Changping LI. Application of deep eutectic solvents in the removal of organic sulfur compounds from fuel[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1297-1307.
崔颖娜,包明,李长平. 深共融溶剂在燃油脱除有机硫化物中的应用[J]. 化工进展, 2019, 38(03): 1297-1307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1114
序号 | DESs | 萃取条件 | 单次脱硫效果 | 多次脱硫效果 | 回收再循环利用 | 多次重复利用 |
---|---|---|---|---|---|---|
1 | TBAC/PEG[ (摩尔比1∶2) | m DES∶m oil=1∶1、25℃、30min、硫初始浓度1600mg/L | 对BT模拟油,脱硫率为70.44% | 4次萃取后,脱硫率99.48% | 4次回收循环使用后,脱硫率基本不变 | 经过6次重复利用后,深共融溶剂趋于饱和状态,失去萃取能力 |
2 | TBAC/PEG/FeCl3 [ (摩尔比4∶1∶0.05) | m DES:m oil=1∶1、25℃、30min、硫初始浓度1600 mg/L | 对DBT模拟油,脱硫率为89.53% | 2次萃取后,脱硫率100% | 5次回收循环使用后,脱硫率基本不变 | 第5次使用后深共融溶剂的萃取率低于50% |
3 | [CH3(CH2)3]4PBr/FeCl3 [ | DES质量分数0.525、50℃、115min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为65%和48%,对商业柴油脱硫率为32% | 6次萃取后,商业柴油的硫浓度降至40μg/g 以下 | 5次回收循环使用后,脱硫率基本不变 | — |
4 | [CH3(CH2)3]4PBr/ SnCl2 .2H2O[ (摩尔比1∶1) | DESs质量分数0.5、30℃、100min、硫初始浓度500 μg/g | 对DBT和T的模拟油,脱硫率分别为69.57%和47.28% | 5次萃取后,DBT和T的萃取率分别为97%和80% | — | 第2次重复利用时,对模拟油中DBT和T的脱硫率分别降至38%和12% |
5 | TBAB/IM[ (摩尔比1∶1) | DES质量分数0.5、30°C、95min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为70%和47%,对商业柴油的脱硫率为47% | 4次萃取后,模拟油中DBT和T的浓度分别降至10μg/g和40μg/g以下,5次萃取后,商业柴油硫浓度降至15μg/g以下 | 5次回收循环使用后,脱硫率基本不变 | — |
6 | TBAB/PEG-600[ (摩尔比1∶2) | V DES∶V oil=1∶1、25℃、30min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为82.40%和62.16% | 3次萃取后,对DBT和T萃取率分别为100%和95.15% | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,对模拟油中DBT和T的脱硫率分别降至31.72%和9.09% |
7 | AlCl3-氯化石蜡-52-甲苯[ | DESs 6%、 293K、10 min、硫初始浓度500μg/g | 对3-MT、BT、DBT模拟油的脱硫率分别为99.81%、99.65%和89.64%,可使真实燃油的硫含量从682.05μg/g降至48.37μg/g | — | — | — |
8 | AlCl3/CH3CONH2 [ (摩尔比1.8∶1) | DESs 6%、50℃、 40min、 硫初始浓度1000μg/g | 模拟油中3-MT、BT、DBT 的转化率分别为97.31%、98.21%和 87.39%;在真实燃油中,硫含量可从580μg/g降至17.9μg/g | — | — | — |
9 | TBAB/HCOOH[ (摩尔比1∶1) | m DES∶m oi=1∶0.5、30℃、40 min、硫初始浓度500μg/g | 对BT、DBT、T模拟油的脱硫率分别为81.75%、80.47%、72%,对FCC汽油和柴油的脱硫率分别为40.94%和35.27% | 3次萃取后,对BT、DBT、T模拟油的脱 硫率分别为98.32%、98.24%、97.6%;4次萃取后, FCC汽油和柴油的脱硫率分别为83.61%和70.21% | — | 4次重复利用后,对BT、DBT、T模拟油的脱硫率分别为25.09%、24.14%、23.96% |
10 | [BPY]Br/Mal[ (摩尔比1∶1) | m DES∶m oil=1∶2、40℃、30 min、硫初始浓度500μg/g | 对FCC汽油中硫化物的脱硫率为94.14% | — | — | — |
11 | TEtA/Pr[ (摩尔比1∶3) | m DES=1.75g、V oil=5mL、30℃、10min、硫初始浓度DBT 500mg/L、BT、4,6-DMDBT、RSH 250mg/L | 对模拟油的脱硫率为51.6% | 4次萃取后,模拟油中的硫的浓度可从500mg/L降至10mg/L | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,硫的分配系数K N从2.14降至1.96 |
12 | MIM/Pr[ (摩尔比1∶1) | m DES= 1.75g、V oil=5mL、30℃、10min、硫初始浓度DBT 500mg/L、BT、4,6-DMDBT、RSH 250mg/L | 硫的分配系数K N为2.31,脱硫率为53.6% | 5次萃取后,可得到无硫燃油 | 5次回收循环使用后,脱硫率基本不变 | — |
13 | [C12DMEA]Cl/FeCl3 [ (摩尔比1∶1) | m DES=1g、V oil=5mL,30oC、10min、硫初始浓度500mg/L | 对DBT的模拟油,脱硫率为52.9% | 5次萃取后,脱硫率可达99.3% | 2次回收循环使用后,脱硫率从52.9%降至52.5% | — |
14 | TBAC/EG[ (摩尔比1∶2) | m DES∶m oil =1∶1、30℃、20 min、硫初始浓度1000 μg/g | 对2-MT和BT两种硫化物混合的模拟油的脱硫率为64.3% | 5次萃取后,脱硫率达99.5% | 6次回收循环使用后,脱硫率基本不变 | — |
15 | TBAB/Sul[ (1∶7) | m DES:m oil=1∶1、25℃、6h、T在正庚烷中的含量为10% | 单次脱硫率为35.07% | 5次萃取后,脱硫率可达98% | 4次回收循环使用后,脱硫率基本不变 | — |
16 | TBPB∶DMF[ (1∶3) | m DES∶m oil =1∶1、30℃、30 min、硫初始浓度500mg/L | 对DBT模拟油的脱硫率为82.1% | 3次萃取后,硫浓度可降至10mg/L以下 | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,脱硫率仅为5.4%,基本失去萃取能力 |
序号 | DESs | 萃取条件 | 单次脱硫效果 | 多次脱硫效果 | 回收再循环利用 | 多次重复利用 |
---|---|---|---|---|---|---|
1 | TBAC/PEG[ (摩尔比1∶2) | m DES∶m oil=1∶1、25℃、30min、硫初始浓度1600mg/L | 对BT模拟油,脱硫率为70.44% | 4次萃取后,脱硫率99.48% | 4次回收循环使用后,脱硫率基本不变 | 经过6次重复利用后,深共融溶剂趋于饱和状态,失去萃取能力 |
2 | TBAC/PEG/FeCl3 [ (摩尔比4∶1∶0.05) | m DES:m oil=1∶1、25℃、30min、硫初始浓度1600 mg/L | 对DBT模拟油,脱硫率为89.53% | 2次萃取后,脱硫率100% | 5次回收循环使用后,脱硫率基本不变 | 第5次使用后深共融溶剂的萃取率低于50% |
3 | [CH3(CH2)3]4PBr/FeCl3 [ | DES质量分数0.525、50℃、115min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为65%和48%,对商业柴油脱硫率为32% | 6次萃取后,商业柴油的硫浓度降至40μg/g 以下 | 5次回收循环使用后,脱硫率基本不变 | — |
4 | [CH3(CH2)3]4PBr/ SnCl2 .2H2O[ (摩尔比1∶1) | DESs质量分数0.5、30℃、100min、硫初始浓度500 μg/g | 对DBT和T的模拟油,脱硫率分别为69.57%和47.28% | 5次萃取后,DBT和T的萃取率分别为97%和80% | — | 第2次重复利用时,对模拟油中DBT和T的脱硫率分别降至38%和12% |
5 | TBAB/IM[ (摩尔比1∶1) | DES质量分数0.5、30°C、95min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为70%和47%,对商业柴油的脱硫率为47% | 4次萃取后,模拟油中DBT和T的浓度分别降至10μg/g和40μg/g以下,5次萃取后,商业柴油硫浓度降至15μg/g以下 | 5次回收循环使用后,脱硫率基本不变 | — |
6 | TBAB/PEG-600[ (摩尔比1∶2) | V DES∶V oil=1∶1、25℃、30min、硫初始浓度500μg/g | 对DBT和T的模拟油,脱硫率分别为82.40%和62.16% | 3次萃取后,对DBT和T萃取率分别为100%和95.15% | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,对模拟油中DBT和T的脱硫率分别降至31.72%和9.09% |
7 | AlCl3-氯化石蜡-52-甲苯[ | DESs 6%、 293K、10 min、硫初始浓度500μg/g | 对3-MT、BT、DBT模拟油的脱硫率分别为99.81%、99.65%和89.64%,可使真实燃油的硫含量从682.05μg/g降至48.37μg/g | — | — | — |
8 | AlCl3/CH3CONH2 [ (摩尔比1.8∶1) | DESs 6%、50℃、 40min、 硫初始浓度1000μg/g | 模拟油中3-MT、BT、DBT 的转化率分别为97.31%、98.21%和 87.39%;在真实燃油中,硫含量可从580μg/g降至17.9μg/g | — | — | — |
9 | TBAB/HCOOH[ (摩尔比1∶1) | m DES∶m oi=1∶0.5、30℃、40 min、硫初始浓度500μg/g | 对BT、DBT、T模拟油的脱硫率分别为81.75%、80.47%、72%,对FCC汽油和柴油的脱硫率分别为40.94%和35.27% | 3次萃取后,对BT、DBT、T模拟油的脱 硫率分别为98.32%、98.24%、97.6%;4次萃取后, FCC汽油和柴油的脱硫率分别为83.61%和70.21% | — | 4次重复利用后,对BT、DBT、T模拟油的脱硫率分别为25.09%、24.14%、23.96% |
10 | [BPY]Br/Mal[ (摩尔比1∶1) | m DES∶m oil=1∶2、40℃、30 min、硫初始浓度500μg/g | 对FCC汽油中硫化物的脱硫率为94.14% | — | — | — |
11 | TEtA/Pr[ (摩尔比1∶3) | m DES=1.75g、V oil=5mL、30℃、10min、硫初始浓度DBT 500mg/L、BT、4,6-DMDBT、RSH 250mg/L | 对模拟油的脱硫率为51.6% | 4次萃取后,模拟油中的硫的浓度可从500mg/L降至10mg/L | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,硫的分配系数K N从2.14降至1.96 |
12 | MIM/Pr[ (摩尔比1∶1) | m DES= 1.75g、V oil=5mL、30℃、10min、硫初始浓度DBT 500mg/L、BT、4,6-DMDBT、RSH 250mg/L | 硫的分配系数K N为2.31,脱硫率为53.6% | 5次萃取后,可得到无硫燃油 | 5次回收循环使用后,脱硫率基本不变 | — |
13 | [C12DMEA]Cl/FeCl3 [ (摩尔比1∶1) | m DES=1g、V oil=5mL,30oC、10min、硫初始浓度500mg/L | 对DBT的模拟油,脱硫率为52.9% | 5次萃取后,脱硫率可达99.3% | 2次回收循环使用后,脱硫率从52.9%降至52.5% | — |
14 | TBAC/EG[ (摩尔比1∶2) | m DES∶m oil =1∶1、30℃、20 min、硫初始浓度1000 μg/g | 对2-MT和BT两种硫化物混合的模拟油的脱硫率为64.3% | 5次萃取后,脱硫率达99.5% | 6次回收循环使用后,脱硫率基本不变 | — |
15 | TBAB/Sul[ (1∶7) | m DES:m oil=1∶1、25℃、6h、T在正庚烷中的含量为10% | 单次脱硫率为35.07% | 5次萃取后,脱硫率可达98% | 4次回收循环使用后,脱硫率基本不变 | — |
16 | TBPB∶DMF[ (1∶3) | m DES∶m oil =1∶1、30℃、30 min、硫初始浓度500mg/L | 对DBT模拟油的脱硫率为82.1% | 3次萃取后,硫浓度可降至10mg/L以下 | 5次回收循环使用后,脱硫率基本不变 | 5次重复利用后,脱硫率仅为5.4%,基本失去萃取能力 |
序号 | DESs | 氧化剂 | 萃取条件 | 脱硫效果 | 回收再循环利用 |
---|---|---|---|---|---|
1 | ChCl/p-TsOH[ (摩尔比1∶2) | H2O2 | m DES∶m oil∶m | 对BT模拟油,脱硫率99.99%,对真实燃油的脱硫率为97.25% | 4次回收循环使用后,对BT模拟油脱硫仍可达98.87% |
2 | TBAC/OXA[ (摩尔比1∶2) | H2O2 | V DES=2mL、V oil=10mL、n(H2O2)∶n(DBT) = 5、 50℃、3h、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为91% | 4次回收循环使用后,脱硫率基本不变 |
3 | L-Pro/p-TsOH[ (摩尔比1∶2) | H2O2 | V DES=2mL、V oil=10mL、n(H2O2)∶n(DBT) = 5、 60℃、2h、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为99% | 6次回收循环使用后,脱硫率基本不变 |
4 | ChCl/CH3COOH[ (摩尔比1∶2) | O2 | V DES=3mL、V oil=15mL、V (aldehyde)=250μL、V (air) =5mL/min、30°C、3h、250W高压汞灯、硫初始浓度500mg/L | 对模拟油中BT、DBT、4,6-DMDBT的最高脱硫率分别为100%,98.6%和68.6% | —① |
5 | [HMIM]Cl/H2C2O4 [ | H2O2 | V DES=1.25mL、V oil=5mL、 n(H2O2)∶n(S)=12、40℃、140min、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为92.2%。 | 7次回收循环使用后,脱硫率基本不变 |
6 | ChCl/H2C2O4 [ (摩尔比1∶1) | H2O2 | V DES = 1mL、V oil = 5mL、V H2O2=0.3mL、40℃、160min、硫质量浓度为500mg/L | 对DBT模拟油,脱硫率为93. 4% | 5 次回收循环使用后,脱硫率基本不变 |
7 | CH3CONH2/ZnCl2 [ (摩尔比1∶0.4) | H2O2 | V oil =5mL、DES/oil=1∶3(V/V)、n(H2O2)∶n(S)=8、70℃、200min、硫质量分数为500μg/g | 对DBT模拟油,脱硫率为87.12% | 5次回收循环使用后,脱硫率基本不变 |
8 | TEAC/TFA[ (摩尔比1∶1) | H2O2 | V DES=1.25mL、V oil=5mL、n(H2O2)∶n(S)=6、40℃、140min、硫质量分数为500μg/g | 对DBT、BT和T的脱硫率分别为95.4%,56.2%和23.4% | 5次回收循环使用后,脱硫率基本不变 |
9 | [C4Pyr]Cl/ /p-TsOH[ (摩尔比1∶0.2) | H2O2 | V DES= 1.00mL、V oil= 5mL、n(H2O2)∶n(DBT)= 6、50℃、硫质量分数为500μg/g | 对DBT、4,6-DMDBT和BT的脱硫率分别为98.2%、96.0%、40.2% | 5次回收循环使用后,对DBT模拟油的脱硫率为95.1% |
10 | C6H5CH2CH2COOH/ZnCl2 [ (摩尔比1∶0.5) | H2O2 | V oil =5mL、DES∶oil=0.25∶1(V/V)、n(H2O2)/n(S)=6、50℃、80min、硫质量分数为500μg/g | 对DBT、BT、4,6-DMDBT的模拟油的脱硫率分别为99.23%,96.12%和98.4% | 5次回收循环使用后,脱硫率基本不变 |
11 | Pr/ZnCl2 [ (摩尔比1∶0.5) | H2O2 | V oil = 5mL、DES/oil=0.15∶1(V/V)、n(H2O2)/n(S)=4、30℃、180min、硫的初始浓度500mg/L | 对DBT、4,6-DMDBT的模拟油和汽油的脱硫率分别为99.42%,98.80%和66.67% | 5次回收循环使用后,对DBT模拟油脱硫率为96.31% |
12 | ChCl/2PEG[ (摩尔比1∶2) | H2O2 | 磷钨酸(HPW)为催化剂、n(HPW)=0.0052mmol、V oil=5mL、V DES=0.5 ml、n(H2O2)/n(S)=3、50℃、3h、硫的初始浓度500mg/L | 对DBT模拟油的脱硫率为99.1% | 4次回收循环使用后,脱硫率基本不变 |
13 | ChCl/2Ac[ (摩尔比1∶2) | H2O2 | [PSTEtA]3PW12O40为催化剂、V oil=5mL、m(catalyst)= 0.025g、n(H2O2)/n(S)=3、40℃、2.5h | 对DBT模拟油的脱硫率为可达100% | — |
14 | ChCl/Gl[ (摩尔比1∶2) | H2O2 | 光催化剂Cu-Fe/TiO2 2.0% 、V DES∶V Oxidizedoil=1∶5、n(H2O2)/n(S)=4、室温、20min、硫初始浓度为100mg/L | 对DBTO2的脱硫率为97.06%,2次萃取后,DBTO2的浓度降至0 | 3次回收循环使用后,对DBTO2的脱硫率为88.34% |
15 | CoCl2/ChCl/2PEG-200[ (摩尔比1∶1∶2) | KHSO5 | m oil =6g、m oil=2g、PMS溶液0.9g、20℃、60min、硫初始浓度为500mg/L | 对DBT模拟油的脱硫率接近100% | 7次回收循环使用后,脱硫率略有降低,降低5% |
16 | ChCl/p-TsOH[ (摩尔比1∶2) | H2O2 | m DES∶m oil =1∶1、m(H2O2)∶m(DBT)=10∶1、50℃、60min、硫初始浓度为6000μg/g | 对DBT模拟油的脱硫率为99.1%,对真实燃油的脱硫率可达67.7% | — |
序号 | DESs | 氧化剂 | 萃取条件 | 脱硫效果 | 回收再循环利用 |
---|---|---|---|---|---|
1 | ChCl/p-TsOH[ (摩尔比1∶2) | H2O2 | m DES∶m oil∶m | 对BT模拟油,脱硫率99.99%,对真实燃油的脱硫率为97.25% | 4次回收循环使用后,对BT模拟油脱硫仍可达98.87% |
2 | TBAC/OXA[ (摩尔比1∶2) | H2O2 | V DES=2mL、V oil=10mL、n(H2O2)∶n(DBT) = 5、 50℃、3h、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为91% | 4次回收循环使用后,脱硫率基本不变 |
3 | L-Pro/p-TsOH[ (摩尔比1∶2) | H2O2 | V DES=2mL、V oil=10mL、n(H2O2)∶n(DBT) = 5、 60℃、2h、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为99% | 6次回收循环使用后,脱硫率基本不变 |
4 | ChCl/CH3COOH[ (摩尔比1∶2) | O2 | V DES=3mL、V oil=15mL、V (aldehyde)=250μL、V (air) =5mL/min、30°C、3h、250W高压汞灯、硫初始浓度500mg/L | 对模拟油中BT、DBT、4,6-DMDBT的最高脱硫率分别为100%,98.6%和68.6% | —① |
5 | [HMIM]Cl/H2C2O4 [ | H2O2 | V DES=1.25mL、V oil=5mL、 n(H2O2)∶n(S)=12、40℃、140min、硫初始浓度500mg/L | 对DBT模拟油,脱硫率为92.2%。 | 7次回收循环使用后,脱硫率基本不变 |
6 | ChCl/H2C2O4 [ (摩尔比1∶1) | H2O2 | V DES = 1mL、V oil = 5mL、V H2O2=0.3mL、40℃、160min、硫质量浓度为500mg/L | 对DBT模拟油,脱硫率为93. 4% | 5 次回收循环使用后,脱硫率基本不变 |
7 | CH3CONH2/ZnCl2 [ (摩尔比1∶0.4) | H2O2 | V oil =5mL、DES/oil=1∶3(V/V)、n(H2O2)∶n(S)=8、70℃、200min、硫质量分数为500μg/g | 对DBT模拟油,脱硫率为87.12% | 5次回收循环使用后,脱硫率基本不变 |
8 | TEAC/TFA[ (摩尔比1∶1) | H2O2 | V DES=1.25mL、V oil=5mL、n(H2O2)∶n(S)=6、40℃、140min、硫质量分数为500μg/g | 对DBT、BT和T的脱硫率分别为95.4%,56.2%和23.4% | 5次回收循环使用后,脱硫率基本不变 |
9 | [C4Pyr]Cl/ /p-TsOH[ (摩尔比1∶0.2) | H2O2 | V DES= 1.00mL、V oil= 5mL、n(H2O2)∶n(DBT)= 6、50℃、硫质量分数为500μg/g | 对DBT、4,6-DMDBT和BT的脱硫率分别为98.2%、96.0%、40.2% | 5次回收循环使用后,对DBT模拟油的脱硫率为95.1% |
10 | C6H5CH2CH2COOH/ZnCl2 [ (摩尔比1∶0.5) | H2O2 | V oil =5mL、DES∶oil=0.25∶1(V/V)、n(H2O2)/n(S)=6、50℃、80min、硫质量分数为500μg/g | 对DBT、BT、4,6-DMDBT的模拟油的脱硫率分别为99.23%,96.12%和98.4% | 5次回收循环使用后,脱硫率基本不变 |
11 | Pr/ZnCl2 [ (摩尔比1∶0.5) | H2O2 | V oil = 5mL、DES/oil=0.15∶1(V/V)、n(H2O2)/n(S)=4、30℃、180min、硫的初始浓度500mg/L | 对DBT、4,6-DMDBT的模拟油和汽油的脱硫率分别为99.42%,98.80%和66.67% | 5次回收循环使用后,对DBT模拟油脱硫率为96.31% |
12 | ChCl/2PEG[ (摩尔比1∶2) | H2O2 | 磷钨酸(HPW)为催化剂、n(HPW)=0.0052mmol、V oil=5mL、V DES=0.5 ml、n(H2O2)/n(S)=3、50℃、3h、硫的初始浓度500mg/L | 对DBT模拟油的脱硫率为99.1% | 4次回收循环使用后,脱硫率基本不变 |
13 | ChCl/2Ac[ (摩尔比1∶2) | H2O2 | [PSTEtA]3PW12O40为催化剂、V oil=5mL、m(catalyst)= 0.025g、n(H2O2)/n(S)=3、40℃、2.5h | 对DBT模拟油的脱硫率为可达100% | — |
14 | ChCl/Gl[ (摩尔比1∶2) | H2O2 | 光催化剂Cu-Fe/TiO2 2.0% 、V DES∶V Oxidizedoil=1∶5、n(H2O2)/n(S)=4、室温、20min、硫初始浓度为100mg/L | 对DBTO2的脱硫率为97.06%,2次萃取后,DBTO2的浓度降至0 | 3次回收循环使用后,对DBTO2的脱硫率为88.34% |
15 | CoCl2/ChCl/2PEG-200[ (摩尔比1∶1∶2) | KHSO5 | m oil =6g、m oil=2g、PMS溶液0.9g、20℃、60min、硫初始浓度为500mg/L | 对DBT模拟油的脱硫率接近100% | 7次回收循环使用后,脱硫率略有降低,降低5% |
16 | ChCl/p-TsOH[ (摩尔比1∶2) | H2O2 | m DES∶m oil =1∶1、m(H2O2)∶m(DBT)=10∶1、50℃、60min、硫初始浓度为6000μg/g | 对DBT模拟油的脱硫率为99.1%,对真实燃油的脱硫率可达67.7% | — |
1 | 孙志娟, 余谟鑫, 张心亚, 等 . 油品中噻吩类硫化物脱除技术研究进展[J]. 化工进展, 2005, 24(9): 1002-1005. |
SUN Z J , YU M X , ZHANG X Y , et al . Technology of desulfurization of thiophene type sulfide in oil[J]. Chemical Industry and Engineering Progress, 2005, 24(9): 1002-1005. | |
2 | 宋红艳, 何静, 李春喜 . 燃料油深度脱硫的技术策略及研究进展[J]. 石油化工, 2015, 44(3): 279-286. |
SONG H Y , HE J , LI C X . Technical strategies and recent advances for deep desulfurization of duel oils[J]. Petrochemical Technology, 2015, 44(3): 279-286. | |
3 | 王宏伟, 贺振富, 田辉平 . FCC汽油非临氢脱硫技术进展[J]. 化工进展, 2005, 24(11): 1216-1224. |
WANG H W , HE Z F , TIAN H P . Progress in desulfurization of FCC gasoline without hydrogenation[J]. Chemical Industry and Engineering Progress, 2005, 24(11): 1216-1224. | |
4 | 郑凯元, 曲凤娇, 陈英杰. 等 . 非加氢脱硫技术研究进展及其在原油预脱硫中的应用展望[J]. 化工进展, 2013, 32(12): 2859-2866. |
ZHENG K Y , QU F J , CHEN Y J , et al . Progress of non-hydrodesulfurization technologies of producing clean fuels and pre-desulfurization of crude oil[J]. Chemical Industry and Engineering Progress, 2013, 32(12): 2859-2866. | |
5 | 项小燕, 林金清 . 离子液体萃取燃料油脱硫技术的研究进展[J]. 化工进展, 2007, 26(12): 1681-1685. |
XIANG X Y , LIN J Q . Progress of extractive desulfurization technology with ionic liquids[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1681-1685. | |
6 | PAIVA A , CRAVEIRO R , AROSO I , et al . Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry Engineering, 2014, 2:1063-1071. |
7 | HOU Y C , YAO C F , WU W Z . Deep eutectic solvents:green solvents for separation applications[J]. Acta Physico-Chimica Sinica, 2018, 34(8): 873-885. |
8 | LI C P , LI D , ZOU S S , et al . Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15:2793-2799. |
9 | LI C P , ZHANG J J , LI Z , et al . Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs)[J]. Green Chemistry, 2016, 18:3789-3795. |
10 | GANO Z S , MJALLI F S , AL-WAHAIBI T , et al . Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents:Experimental design and optimization by central-composite design[J]. Chemical Engineering and Processing: Process Intensification, 2015, 93: 10-20. |
11 | GANO Z S , MJALLI F S , AL-WAHAIBI T , et al . The novel application of hydrated metal halide (SnCl2·2H2O) -based deep eutectic solvent for the extractive desulfurization of liquid fuels[J]. International Journal of Chemical Engineering and Applications, 2015, 6(5): 367-371. |
12 | GANO Z S , MJALLI F S , AL-WAHAIBI T , et al . Desulfurization of liquid fuel via extraction with imidazole-containing deep eutectic solvent[J]. Green Processing and Synthesis, 2017, 6(5): 511-521. |
13 | RAHMA W S A , MJALLI F S , AL-WAHAIBI T , et al . Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions[J]. Chemical Engineering Research and Design, 2017, 120:271-283. |
14 | TANG X D , ZHANG Y F , LI J J , et al . Deep extractive desulfurization with arenium ion deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2015, 54:4625-4632. |
15 | TANG X D , ZHANG Y F , LI J J , et al . Alkylation of thiophenic compounds catalyzed by deep eutectic solvents[J]. Catalysis Communications, 2015, 70:40-43. |
16 | LI J J , XIAO H , TANG X D , et al . Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization[J]. Energy Fuels, 2016, 30(7): 5411-5418. |
17 | LI J J , ZHOU M , TANG X D , et al . Deep desulfurization of FCC gasoline by extraction with dicarboxylic acid-based deep eutectic solvents[J]. Petroleum Science and Technology, 2017, 35(19): 1903-1909. |
18 | WANG X , JIANG W , ZHU W S , et al . A simple and cost-effective extractive desulfurization process with novel deep eutectic solvents[J]. RSC Advances, 2016, 6:30345-30352. |
19 | JIANG W , LI H P , WANG C , et al . Synthesis of ionic-liquid-based deep eutectic solvents for extractive desulfurization of fuel[J]. Energy Fuels, 2016, 30:8164-8170. |
20 | JIANG W , DONG L , LIU W , et al . Biodegradable choline-like deep eutectic solvents for extractive desulfurization of fuel[J]. Chemical Engineering and Processing: Process Intensification, 2017, 115:34-38. |
21 | SHU C H , SUNT H . Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents[J]. Separation Science and Technology, 2016, 51:1336-1343. |
22 | HADJ-KALI M K , MULYONO S , HIZADDIN H F , et al . Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8415-8523. |
23 | CHENG H Y , LIU C Y , ZHANG J J , et al . Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model[J]. Chemical Engineering & Processing:Process Intensification, 2018, 125: 246-252. |
24 | WARRAG S E E , RODRIGUEZ N R , NASHEF I M , et al . Separation of thiophene from aliphatic hydrocarbons using tetrahexylammonium-based deep eutectic solvents as extracting agents[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2911-2919. |
25 | WARRAG S E E , ADEYEMI I , RODRIGUEZ N R , et al . Effect of the type of ammonium salt on the extractive desulfurization of fuels using deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2018, 63(4): 1088-1095. |
26 | YIN J M , WANG J P , LI Z , et al . Deep desulfurization of fuels based on oxidation/extraction process with acidic deep eutectic solvents[J]. Green Chemistry, 2015, 17:4552-4559. |
27 | LÜ H Y , LI C P , DENG C L , et al . Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chemical Communications, 2015, 51:10703-10706. |
28 | HAO L W , WANG M R , SHAN W J , et al . L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. Journal of Hazardous Materials, 2017, 339:216-222. |
29 | ZHU W S , WANG C , LI H P , et al . One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chemistry, 2015, 17:2464-2472. |
30 | 侯良培, 赵荣祥, 李秀萍, 等 . 甲基咪唑盐酸盐/草酸型低共熔溶剂的制备及其在模拟油中氧化脱硫中的应[J]. 化工学报, 2016, 67(9): 3972-3980. |
HOU L P , ZHAO R X , LI X P , et al . Preparation of methylimidazole hydrochloride/oxalic acid type deep eutectic solvent and its application in oxidative desulfurization of model oil[J]. CIESC Journal, 2016, 67(9): 3972-3980. | |
31 | 毛春峰, 赵荣祥, 李秀萍 . 氯化胆碱/草酸低共熔溶剂高效脱除模拟油中硫[J]. 化学工程, 2017, 45(5): 6-10. |
MAO C F , ZHAO R X , LI X P . High removal rate of sulfur in model oil by ChCl /H2C2O4 deep eutectic solvents[J]. Chemical Engineering (China), 2017, 45(5): 6-10. | |
32 | 毛春峰, 赵荣祥, 李秀萍, 等 . CH3CONH2/ZnCl2低共熔溶剂脱除模拟油中的硫化物[J]. 辽宁石油化工大学学报, 2017, 37(5):1-7. |
MAO C F , ZHAO R X , LI X P , et al . Removal of sulfides from simulated oil by CH3CONH2/ZnCl2 deep eutectic solvent[J]. Journal of | |
Liaoning Shihua University, 2017, 37(5): 1-7. | |
33 | 侯良培, 赵荣祥, 李秀萍, 酸性低共熔溶剂四乙基氯化铵/三氟乙酸高效催化氧化脱除模拟油中的硫化物 [J]. 化工学报, 2017, 68(4): 1614-1620. |
HOU L P, ZHAO R X, LI X P, Highly efficient catalytic oxidation desulfurization from model oil based on acid deep eutectic solvents tetraethylammonium chloride/trifluoroacetic acid[J]. CIESC Journal, 2017, 68(4): 1614-1620. | |
34 | 侯良培, 赵荣祥, 李秀萍 . [C4Pyr]Cl/nTsOH 型低共熔溶剂的制备及其氧化脱除模拟油中的二苯并噻吩[J]. 石油化工, 2017, 46(7): 888-895. |
HOU L P , ZHAO R X , LI X P . Preparation of C4Pyr]Cl/nTsOH deep eutectic solvents and its application in oxidative removal of dibenzothiophene from model oil[J]. Petrochemical Technology,2017, 46(7): 888-895. | |
35 | MAO C F , ZHAO R X , LI X P . Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil[J]. Fuel, 2017, 189:400-407 |
36 | MAO C F , ZHAO R X , LI X P . Propionic acid-based deep eutectic solvents:synthesis and ultra-deep oxidative desulfurization activity[J]. RSC Advances, 2017, 7:42590-42596. |
37 | LIU W , JIANG W , ZHU W Q , et al . Oxidative desulfurization of fuels promoted by choline chloride-baseddeep eutectic solvents[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424:261-268. |
38 | JIANG W , DONG L , LIU W , et al . Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvent[J]. RSC Advances, 2017, 7:55318-55325. |
39 | ZAID H F M , KAIT C F , MUTALI M I A . Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent[J]. Fuel, 2017, 192:10-17. |
40 | XU H , ZGANG D D , WU F M , et al . Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents[J]. Fuel, 2018, 225:104-110. |
41 | LI Z H , LIU D , MEN Z W, et al . Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents:an innovative evaluation criterion to filtrate extractants using the compatibility index[J]. Green Chemistry, 2018, 20: 3112-3120. |
42 | TANG L , LUO G Q , KANG L H , et al . A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process[J]. Korean Journal of Chemical Engineering, 2013, 30(2): 314-320. |
43 | OTSUKI S , NONAKA T , TAKASHIMA N , et al . Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000, 14(6): 1232-1239. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[6] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[7] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[8] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[9] | FAN Siqiang, PENG Shaozhong, PENG Chong, HU Yongkang. Research progress in high value-added utilization technology of waste plastics [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1020-1027. |
[10] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[11] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[12] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[13] | SHEN Tianxu, SHEN Laihong. Investigation of multi-fuel chemical looping combustion in a 3kW interconnected fluidized bed reactors [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 138-147. |
[14] | FANG Kejing, XIONG Zuhong, LU Min, LI Tao, CHEN Yong. Research progress in preparation, thermal conversion characteristics and application of refuse derived fuel [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 132-140. |
[15] | KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |