Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1468-1475.DOI: 10.16085/j.issn.1000-6613.2018-1031

Previous Articles     Next Articles

Evolution of pore structure and fractal characteristics of graphite lining in rare earth electrolytic cell during high temperature oxidation

Qingsheng LIU(),Xu DUAN,Chengliang TAN   

  1. 1. School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
  • Received:2018-05-21 Revised:2018-11-09 Online:2019-03-05 Published:2019-03-05

稀土电解槽石墨内衬高温氧化过程中孔隙结构演化规律及其分形特征

刘庆生(),段旭,谈成亮   

  1. 1. 江西理工大学冶金与化学工程学院,江西 赣州 341000
  • 作者简介:刘庆生(1975—),男,博士,副教授,研究方向为碳素材料。E-mail:lqs_01259@126.com
  • 基金资助:
    国家自然科学基金(51564019)

Abstract:

In view of the breakage of graphite lining in rare earth electrolytic cell, micro-CT was used to study the evolution characteristics of internal micro-pore structure of rare-earth electrolytic cell graphite lining under different oxidation time. The variation rules of the porosity, pore throat size, pore throat shape factor, pore fractal dimension and other parameters were investigated. The result showed that the average porosity of the graphite lining was gradually increased after 0, 1h, 2h and 3h of oxidation time, and the porosity were 4.02%, 8.53%, 11.18%, and 13.35%, respectively. The number of pore throats with size between 5—25 μ m and shape factor between 0.02—0.05 increased from 17903 to 39388. Therefore, fractal dimension can be used indirectly to judge the degree of oxidation corrosion of graphite lining. Finally, a fractal expression of the permeability of the graphite liner was established. The theoretical permeability of the graphite liner under the oxidation time of 0, 1h, 2h, and 3h was calculated to be 0.10 μ m2, 0.25 μ m2, 0.37 μ m2, and 0.52 μ m2, respectively. The calculated result were similar to the actual permeability which were 0.09 μ m2, 0.18 μ m2, 0.38 μ m2 and 0.57 μ m2, therefore, it can be used to predict the permeability of graphite lining.

Key words: graphite lining, permeability, porous media, oxidation, pore evolution, fractal

摘要:

针对稀土电解槽石墨内衬破损问题,采用显微CT研究稀土电解槽石墨内衬在不同氧化时间下内部微观孔隙结构演化特征,考察了孔隙率、孔喉尺寸、孔喉形状因子、孔隙分形维数等参数的变化规律。结果表明: 石墨内衬氧化0、1h、2h、3h后的平均孔隙率在逐渐增大,分别为4.02%、8.53%、11.18%、13.35%,孔喉尺寸为5~25μm与孔喉形状因子为0.02~0.05的孔喉数量从17903增加到39388。进一步应用分形理论分析发现:氧化不同时间的石墨内衬孔隙构造均符合分形规律,且随着氧化时间的增大,石墨内衬的氧化腐蚀越来越严重,石墨内衬孔隙分形维数从1.5722增加到1.6985。因此可以间接地用分形维数来判断石墨内衬的氧化腐蚀程度。最后建立了石墨内衬渗透率的分形表达式,由此计算氧化0、1h、2h、3h的石墨内衬理论渗透率分别为0.10 μ m2、0.25 μ m2、0.37 μ m2、0.52 μ m2。计算结果与其实际渗透率0.09 μ m2、0.18 μ m2、0.38 μ m2、0.57 μ m2相差不大,可以用此式来预测石墨内衬的渗透率。

关键词: 石墨内衬, 渗透率, 多孔介质, 氧化, 孔隙演化, 分形

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd