Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1443-1451.DOI: 10.16085/j.issn.1000-6613.2018-0905
Previous Articles Next Articles
Shaobin YANG(),Yaohan JI,Ding SHEN
Received:
2018-05-03
Revised:
2018-11-16
Online:
2019-03-05
Published:
2019-03-05
作者简介:
基金资助:
CLC Number:
Shaobin YANG,Yaohan JI,Ding SHEN. Phase structure control and applications of graphene oxide liquid crystals[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1443-1451.
杨绍斌,籍遥函,沈丁. 氧化石墨烯液晶相结构的调控及应用进展[J]. 化工进展, 2019, 38(03): 1443-1451.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0905
GO | DL | σ D | 宽高比 |
---|---|---|---|
A | 1.65 | 1.28 | 1600 |
B | 1.22 | 1.16 | 1200 |
C | 0.75 | 0.88 | 700 |
GO | DL | σ D | 宽高比 |
---|---|---|---|
A | 1.65 | 1.28 | 1600 |
B | 1.22 | 1.16 | 1200 |
C | 0.75 | 0.88 | 700 |
1 | CHUARD T , DESCHENAUX R . First fullerene[60]-containing thermotropic liquid crystal. preliminary communication[J]. Helvetica Chimica Acta, 1996, 79(3): 736-741. |
2 | BEHABTU N , LOMEDA J R , GREEN M J , et al . Spontaneous high-concentration dispersions and liquid crystals of graphene[J]. Nature Nanotechnology, 2010, 5(6): 406-411. |
3 | ZAMORA-LEDEZMA C , PUECH N , ZAKRI C , et al . Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide[J]. The Journal of Physical Chemistry Letters,2012,3(17): 2425-2430. |
4 | XU Z , GAO C . Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4): 2908-2915. |
5 | KIM J E, HAN T H , LEE S H, et al . Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13): 3043-3047. |
6 | JALILI R , ABOUTALEBI S H , ESRAFILZADEH D , et al . Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures[J]. ACS Nano, 2013,7(5): 3981-3990. |
7 | DREYER D R , TODD A D , BIELAWSKI C W . Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews, 2014, 43(15): 5288-5301. |
8 | LEE S H,LEE D H,LEE W J,et al . Tailored assembly of carbon nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(8): 1338-1354. |
9 | KIM J Y,KIM B H, HWANG J O ,et al . Flexible and transferrable self-assembled nanopatterning on chemically modified graphene[J]. Advanced Materials, 2013,25(9): 1331-1335. |
10 | YUN J M ,KIM K N,KIM J Y, et al . DNA origami nanopatterning on chemically modified graphene[J]. Angewandte Chemie: International Edition, 2012, 124(4): 936-939. |
11 | HWANG J O ,LEE D H,KIM J Y,et al . Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission[J]. Journal of Materials Chemistry,2011,21(10): 3432-3437. |
12 | LEE D H,LEE J A,LEE W J,et al . Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films[J]. Small,2011,7(1): 95-100. |
13 | HAN T H ,LEE W J,LEE D H,et al . Peptide/graphene hybrid assembly into core/shell nanowires[J]. Advanced Materials,2010,22(18): 2060-2064. |
14 | BRODIE B C . Sur le poids atomique du graphite[J]. Ann. Chim. Phys.,1860, 59(466): e472. |
15 | STAUDENMAIER L . Verfahren zur darstellung der graphitsäure[J]. European Journal of Inorganic Chemistry,1898,31(2): 1481-1487. |
16 | HUMMERES Jr W S , OFFEMAN R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6): 1339-1339. |
17 | DIMIEV A M , TOUR J M . Mechanism of graphene oxide formation[J]. ACS Nano,2014,8(3): 3060-3068. |
18 | MARCANO D C , KOSYNKIN D V , BERLIN J M ,et al . Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8): 4806-4814. |
19 | PENG L , XU Z , LIU Z ,et al . An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications,2015, 6: 5716. |
20 | YU C , WANG C F , CHEN S . Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 2016, 6: 17071. |
21 | BLUNH D , PRAEFCKE K , VILL V ,et al . Amphotropic liquid crystals[M]//PRAEFCKE K, VILI V. Handbook of Liquid Crystals Set., New York: John wiley&sons Inc. 1998: 305-340. |
22 | 童丽萍 . 氧化石墨烯基材料的液晶性与光子晶体研究及在交联酶聚体制备中的应用[D]. 天津:天津大学, 2014. |
TONG L P . Studies on graphene oxide-based materials: liquid crystals, photonic crystals and cross-linked enzyme aggregates[D]. Tianjin: Tianjin University, 2014. | |
23 | SCALIA G , BÜHLER C VON , HÄGELE C ,et al . Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals[J]. Soft Matter,2008,4(3): 570-576. |
24 | PISULA W , KASTLER M , WASSERFALLEN D ,et al . Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents[J]. Journal of the American Chemical Society,2004,126(26): 8074-8075. |
25 | XU Z , GAO C . Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2:571. |
26 | FERNSLER J , HOUGH L , SHAO R F ,et al . Giant-block twist grain boundary smectic phases[J]. Proceedings of the National Academy of Sciences,2005,102(40): 14191-14196. |
27 | ONSAGER L . Anisotropic solutions of colloids[J]. Phys. Rev., 1942, 62(558): 12. |
28 | ONSAGER L . The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences,1949,51(14): 627-659. |
29 | KOOIJ F M VAN DER , LEKKERKERKER H N . Formation of nematic liquid crystals in suspensions of hard colloidal platelets[J]. The Journal of Physical Chemistry B,1998,102(40): 7829-7832. |
30 | KOOIJ F M VAN DER , KASSAPIDOU K , LEKKERKERKER H N . Liquid crystal phase transitions in suspensions of polydisperse plate-like particles[J].Nature,2000,406(6798): 868-871. |
31 | ABOUTALEBI S H , GUDARZI M M , ZHENG Q B ,et al . Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions[J]. Advanced Functional Materials,2011,21(15): 2978-2988. |
32 | DAN B, BEHABTU N , MARTINEZ A ,et al . Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter,2011,7(23): 11154-11159. |
33 | OH J Y, PARK J , JEONG Y C ,et al . Secondary interactions of graphene oxide on liquid crystal formation and stability[J]. Particle & Particle Systems Characterization,2017,34(9): 16003831. |
34 | AL-ZANGANA S , ILIUT M , TURNER M ,et al . Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions[J]. 2D Materials,2017,4(4): 0410041-10. |
35 | TKACZ R , OLDENBOURG R , MEHTA S B ,et al . pH dependent isotropic to nematic phase transitions in graphene oxide dispersions reveal droplet liquid crystalline phases[J]. Chemical Communications,2014,50(50): 6668-6671. |
36 | ZHAO X L , XU Z , XIE Y ,et al . Polyelectrolyte-stabilized graphene oxide liquid crystals against salt, pH, and serum[J]. Langmuir,2014,30(13): 3715-3722. |
37 | HUANG X , HE J X , SUN K , et al . Liquid crystal behavior and cytocompatibility of graphene oxide dispersed in sodium alginate solutions[J]. Carbon, 2018, 129: 258-269. |
38 | SHEN T Z , HONG S H , SONG J K . Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient[J]. Nature Materials,2014,13(4): 394-399. |
39 | AHMAD R T M , HONG S H , SHEN T Z ,et al . Optimization of particle size for high birefringence and fast switching time in electro-optical switching of graphene oxide dispersions[J]. Optics Express,2015,23(4): 4435-4440. |
40 | LEE W J, MAITI U N ,LEE J M,et al . Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chemical Communications,2014,50(52): 6818-6830. |
41 | GHOSH D ,KIM S O . Chemically modified graphene based supercapacitors for flexible and miniature devices[J]. Electronic Materials Letters,2015,11(5): 719-734. |
42 | MAITI U N ,LIM J,LEE K E,et al . Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors[J]. Advanced Materials,2014,26(4): 615-619. |
43 | CHIDEMBO A T , ABOUTALEBI S H , KONSTANTINOV K ,et al . Liquid crystalline dispersions of graphene-oxide-based hybrids: a practical approach towards the next generation of 3D isotropic architectures for energy storage applications[J]. Particle & Particle Systems Characterization,2014,31(4): 465-473. |
44 | KOU L , LIU Z , HUANG T Q , et al . Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes[J]. Nanoscale, 2015, 7(9): 4080-4087. |
45 | WANG B , LIU J Z , ZHAO Y , et al . Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22316-22323. |
46 | SHAIBANI M , AKBARI A , SHEATH P , et al . Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode[J]. ACS Nano, 2016, 10(8): 7768-7779. |
47 | CHEN W , YAN L . Centimeter-sized dried foam films of graphene: preparation, mechanical and electronic properties[J]. Advanced Materials,2012,24(46): 6229-6233. |
48 | CHEN W , LI S , CHEN C , et al . Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J]. Advanced Materials, 2011, 23(47): 5679-5683. |
49 | SHEN T Z , HONG S H , SONG J K . Effect of centrifugal cleaning on the electro-optic response in the preparation of aqueous graphene-oxide dispersions[J]. Carbon,2014,80:560-564. |
50 | HE L Q , YE J , SHUAI M ,et al . Graphene oxide liquid crystals for reflective displays without polarizing optics[J]. Nanoscale, 2015, 7(5): 1616-1622. |
51 | 许震 . 石墨烯液晶及宏观组织纤维[D]. 杭州: 浙江大学,2013. |
XU Z . Graphene liquid crystals and macroscopically assembled fibers[D]. Hangzhou: Zhejiang University, 2013. | |
52 | XIN G Q , YAO T K , SUN H T , et al . Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252): 1083-1087. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[5] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[6] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[7] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[8] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[9] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[10] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[11] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[12] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[15] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |