Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 3009-3015.DOI: 10.16085/j.issn.1000-6613.2017-1841
Previous Articles Next Articles
ZHANG Lin1, ZHAO Kunfeng2, CAI Ting1,2, XIAO Bei1, HE Dannong1,2
Received:
2017-09-04
Revised:
2017-12-06
Online:
2018-08-05
Published:
2018-08-05
张林1, 赵昆峰2, 蔡婷1,2, 肖蓓1, 何丹农1,2
通讯作者:
何丹农,教授,研究方向为纳米材料的研究及产业化。
作者简介:
张林(1993-),男,硕士研究生,研究方向为环保催化。E-mail:15821905636@163.com。
基金资助:
CLC Number:
ZHANG Lin, ZHAO Kunfeng, CAI Ting, XIAO Bei, HE Dannong. Effect of heterogeneous metal ion doping on the catalytic properties of cerium-based solid solution[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3009-3015.
张林, 赵昆峰, 蔡婷, 肖蓓, 何丹农. 异质金属离子掺杂对铈基固溶体催化性能的影响[J]. 化工进展, 2018, 37(08): 3009-3015.
[1] 王莉, 王书明, 张力. 铈锆比对储氧材料铈锆固溶体性能的影响[J]. 稀有金属, 2011, 35(2):276-280. WANG Li, WANG Shuming, ZHANG Li. Effect of Ce/Zr ratio on properties of ceria-zirconia solid solution as oxygen storage material[J]. Chinese Journal of Rare Metals, 2011, 35(2):276-280. [2] RICO-PEREZ V, ANEGGI E, TROVARELLI A. The effect of Sr addition in Cu-and Fe-modified CeO2 and ZrO2 soot combustion catalysts[J]. Catalysts, 2017, 7(1):28. [3] DENG J, ZHOU Y, CUI Y J, et al. The influence of H2O2 on the properties of CeO2-ZrO2, mixed oxides[J]. Journal of Materials Science, 2017, 52(9):5242-5255. [4] DEBEK R, MOTAK M, GALVEZ M E, et al. Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2, methane reforming[J]. International Journal of Hydrogen Energy, 2017, 42(37):23556-23567. [5] FENG C G, FAN G D, LIU X. Review of ceria as promoters in three-way catalysis[J]. Chemical Industry & Engineering Progress, 2005, 24(3):227-230. [6] MADIER Y, DESCORME C, GOVIC A M L, et al. Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds:study by CO transient oxidation and 18O/16O isotopic exchange[J]. Journal of Physical Chemistry B:Materials Surfaces Interfaces Amp Biophysical, 1999, 103(50):10999-11006. [7] OUYANG J, ZHAO Z, ZHANG Y, et al. Textual properties and catalytic performances of halloysite hybrid CeO2-ZrO2 nanoparticles[J]. Journal of Colloid & Interface Science, 2017, 505:430. [8] OZAWA M, TAKAHASHI-MORITA M, KOBAYASHI K, et al. Core-shell type ceria zirconia support for platinum and rhodium three way catalysts[J]. Catalysis Today, 2017, 281:482-489. [9] LAN L, CHEN S, CAO Y, et al. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst[J]. Journal of Colloid & Interface Science, 2015, 450:404-416. [10] ZHOU Z, OU Y J, YANG H, et al. Three-way catalytic performances of Pd loaded halloysite-Ce0.5Zr0.5O2 hybrid materials[J]. Applied Clay Science, 2016, 121/122:63-70. [11] SELLICK D R, ARANDA A, GARCIA T, et al. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation[J]. Applied Catalysis B:Environmental, 2013, 132/133(1):98-106. [12] JI Y, XU D, BAI S, et al. Pt-and Pd-promoted CeO2-ZrO2 for passive NOx adsorber applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(1):111-125s. [13] JEONG M, NUNOTANI N, MORIYAMA N, et al. Effect of introducing Fe2O3 into CeO2-ZrO2 on oxygen release properties and catalytic methane combustion over PdO/CeO2-ZrO2-Fe2O3/γ-Al2O3 catalysts[J]. Catalysis Science & Technology, 2017, 7:1986-1990. [14] 魏永刚, 王华, 李孔斋,等. Ce-Fe-Zr-O(x)/Al2O3氧载体的制备及其选择性氧化甲烷制合成气[J]. 材料导报, 2013, 27(10):74-78. WEI Yonggang, WANG Hua, LI Kongzhai, et al. Preparation and performance of Ce-Fe-Zr-O(x)/Al2O3 oxygen carrier for selective oxidation of methane to syngas[J]. Materials Review, 2013, 27(10):74-78. [15] WANG J, DENG L, HE D, et al. A facile and rapid route to synthesize CuOx/Ce0.8Zr0.2O2 catalysts with high performance for CO preferential oxidation (CO-PROX)[J]. International Journal of Hydrogen Energy, 2015, 40(36):12478-12488. [16] ZHANG P F, LU H F, ZHOU Y, et al. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of C-H bonds by O2[J]. Nature Communications, 2015,6. DOI:10.1038/ncomms9446. [17] SHANG D, WEI C, WEI Z, et al. Catalytic oxidation of NO to NO2 over Co-Ce-Zr solid solutions:enhanced performance of Ce-Zr solid solution by Co[J]. Catalysis Letters, 2014, 144(3):538-544. [18] LIOTTA L F, CARLO G D, PANTALEO G, et al. Co3O4/CeO2 composite oxides for methane emissions abatement:relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Applied Catalysis B:Environmental, 2006, 66(3):217-227. [19] BOZO C, GUILHAUME N, HERRMANN J M. Role of the ceria-zirconia support in the reactivity of platinum and palladium catalysts for methane total oxidation under lean conditions[J]. Journal of Catalysis, 2001, 203(2):393-406. [20] FERNANDEZ-GARCIA M, MARTINEZ-ARIAS A, IGLESIAS-JUEZ A,et al. New Pd/CexZrxO/AlO three-way catalysts prepared by microemulsion:Part 1. Characterization and catalytic behavior for CO oxidation[J]. Applied Catalysis B:Environmental, 2001, 31(31):39-50. [21] KIM D J. Lattice parameters, ionic conductivities and solubility limits in fluorite-structure MO2(M=Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions[J]. Journal of the American Ceramic Society, 1989, 72(8):1415-1421. [22] KASPAR J, FOMASIEM P, BALDUECI G, et al. Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route[J]. Inorganiea Chimiea Acts, 2003, 349:217-226. [23] ZHANG Y, ANDERSSON S, MUHAMMED M. Nanophase, catalytic oxides:I. Synthesis of doped cerium oxides as oxygen storage promoters[J]. Applied Catalysis B:Environmental, 1995, 6(4):325-337. [24] FORNASIERO P, KASPAR J, GUBITOSA G, et al. Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide[J]. Journal of Catalysis, 1997, 171(1):160-168. [25] ZHANG F, XU Q, HUANG D, et al. Structure and oxygen ionic conductivity of Bi2Cu0.1-xWxV0.9O5.35-δ[J]. Journal of the Chinese Ceramic Society, 2007, 35(9):1157-1162. [26] YAHIRO H, EGUCHI Y, EGUCHI K, et al. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure[J]. Journal of Applied Electrochemistry, 1988, 18(4):527-531. [27] INABA H, TAGAWA H. Ceria-based solid electrolytes[J]. Solid State Ionics, 1996, 83(1/2):1-16. [28] ANEGGI E, LEITENBURG C D, DOLCETTI G, et al. Diesel soot combustion activity of ceria promoted with alkali metals[J]. Catalysis Today, 2008, 136(1):3-10. [29] AO X Q, WANG H, WEI Y G, et al. Reduction behavior of methane in alkali molten carbonates[J]. Journal of Fuel Chemistry & Technology, 2008, 36(36):455-461. [30] LIU J, ZHAO Z, XU C, et al. Diesel soot oxidation over supported vanadium oxide and K-promoted vanadium oxide catalysts[J]. Applied Catalysis B:Environmental, 2005, 61(1/2):36-46. [31] LIN J, YANG L, WANG T, et al. Investigation on the structure-activity relationship of BaO promoting Pd/CeO2-ZrO2 catalysts for CO, HC and NOx conversions.[J]. Physical Chemistry Chemical Physics Pccp, 2017, 19(11):7844-7852. [32] YU C L, HU J B, YANG K, et al. Preparation of Ni/MxOy/CeO2-ZrO2(M=Cu, Ba, Al) composite catalysts and their catalytic performance in methane partial oxidation[J]. Chinese Journal of Rare Metals, 2014,1. DOI:10.13373/j.cnki.cjrm.2014.01.010. [33] FROLOVA E V, IVANOVSKAYA M, SADYKOV V, et al. Properties of Ce-Zr-La-O nano-system with ruthenium modified surface[J]. Progress in Solid State Chemistry, 2005, 33(2/3/4):317-325. [34] ZHANG T S, MA J, CHAN S H, et al. Intermediate-temperature ionic conductivity of ceria-based solid solutions as a function of gadolinia and silica contents[J]. Solid State Sciences, 2004, 6(6):565-572. [35] 于鹤, 李法社, 祝星,等. Ce-Fe-Zr-O/MgO整体型氧载体用于化学链部分氧化甲烷制合成气[J]. 燃料化学学报, 2015, 43(4):499-506. YU He, LI Fashe, ZHU Xing, et al. Monolithic Ce-Fe-Zr-O/MgO oxygen carrier for the chemical-looping partial oxidation of methane to syngas[J]. Journal of Fuel Chemistry & Technology, 2015, 43(4):499-506. [36] MATSUMOTO S. Recent advances in automobile exhaust catalysts[J]. Catalysis Surveys from Asia, 1997, 1(1):111-117. [37] WU Y L, ZHAO W J, LI X H, et al. Effects of Al doping on CeZr solid solution for oxidative dehydrogenation of ethylbenzene with CO2[J]. Journal of Fuel Chemistry & Technology, 2017, 45(2):189-193. [38] 邓湘玲, 叶松寿, 曹志凯,等. Ag/Ce0.75Zr0.25O2催化剂中Ag的负载量对碳烟燃烧活性的影响[J]. 化工学报, 2017, 68(8):3064-3070. DENG Xiangling, YE Songshou, CAO Zhikai, et al. Effect of Ag loading on soot oxidation for Ag/Ce0.75Zr0.25O2 catalysts[J]. CIESC Journal, 2017, 68(8):3064-3070. [39] LIU Y, HAYAKAWA T, ISHⅡ T, et al. Methanol decomposition to synthesis gas at low temperature over palladium supported on ceria-zirconia solid solutions[J]. Applied Catalysis A:General, 2001, 210(1/2):301-314. [40] WU X, FAN J, RAN R, et al. Effect of preparation methods on the structure and redox behavior of platinum-ceria-zirconia catalysts[J]. Chemical Engineering Journal, 2005, 109(1/2/3):133-139. [41] NISHIHATA Y, MIZUKI J, AKAO T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control[J]. Nature, 2002, 418(6894):164. [42] HE H, DAI H X, AU C T. An investigation on the utilization of perovskite-type oxides La1-xSrxMO3(M=Co0.77Bi0.20Pd0.03) as three-way catalysts[J]. Applied Catalysis B:Environmental, 2001, 33(1):65-80. [43] TANAKA H, MISONO M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State & Materials Science, 2001, 5(5):381-387. [44] MARKARYAN G L, IKRYANNIKOVA L N, MURAVIEVA G P, et al. Redox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 1999, 151(3):435-447. [45] 何洪, 戴宏兴, 李佩恒,等. Ce0.6Zr0.35Y0.05O2和Pr0.6Zr0.35Y0.05O2固熔体的氧储存能力及氧化-还原性能的研究[J]. 中国稀土学报, 2002, 20(s1):43-46. HE Hong, DAI Hongxing, LI Peiheng, et al. Investigation on oxygen storage capacity and redox properties over Ce0.6Zr0.35Y0.05O2 and Pr0.6Zr0.35Y0.05O2[J]. Journal of the Chinese Rare Earth Society, 2002, 20(s1):43-46. [46] 李凯, 周卫华, 王学中,等. CeO2基氧化物储氧材料研究(Ⅰ)制备、储氧性能研究[J]. 中国稀土学报, 2004, 22(1):81-84. LI Kai, ZHOU Weihua, WANG Xuezhong, et al. CeO2-based oxygen storage compounds I. Preparation and oxygen storage capacity investigation[J]. Journal of the Chinese Rare Earth Society, 2004, 22(1):81-84. [47] COLUSSI S, LEITENBURG C D, DOLCETTI G, et al. The role of rare earth oxides as promoters and stabilizers in combustion catalysts[J]. Journal of Alloys & Compounds, 2004, 374(1):387-392. [48] 樊国栋, 冯长根, 张昭, 等. 镨改性铈锆氧化物固溶体的制备与表征[J]. 稀土, 2007, 28(4):9-13. FAN Guodong, FENG Changgen, ZHANG Zhao, et al. Synthesis and characterization of Pr-doped ceria-zirconia solid solution[J]. Chinese Rare Earths, 2007, 28(4):9-13. [49] SI R, ZHANG Y W, WANG L M, et al. Enhanced thermal stability and oxygen storage capacity for CexZr1-xO2(x=0.4-0.6) solid solutions by hydrothermally homogenous doping of trivalent rare earths[J]. Journal of Physical Chemistry C, 2007, 111:787-794. [50] 王常珍. 固体电解质和化学传感器[M]. 北京:冶金工业出版社, 2000:55. WANG Changzhen. Solid electrolytes and chemical sensors[M]. Beijing:Metallurgical Industry Press, 2000:55. [51] YAHIRO H, OHUCHI T, EGUCHI K, et al. Electrical properties and microstructure in the system ceria-alkaline earth oxide[J]. Journal of Materials Science, 1988, 23(3):1036-1041. [52] ZHAO M, SHEN M, WEN X, et al. Ce-Zr-Sr ternary mixed oxides structural characteristics and oxygen storage capacity[J]. Journal of Alloys & Compounds, 2008, 457(1/2):578-586. [53] YUE B, ZHOU R, WANG Y, et al. Study of the methane combustion and TPR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M=Mg, Ca, Sr, Ba[J]. Journal of Molecular Catalysis A:Chemical, 2005, 238(1/2):241-249. [54] AN Y, SHEN M, WANG J. Comparison of the microstructure and oxygen storage capacity modification of Ce0.67Zr0.33O2, from CaO and MgO doping[J]. Journal of Alloys & Compounds, 2007, 441(1/2):305-310. [55] YANG L, LIN S, YANG X, et al. Promoting effect of alkaline earth metal doping on catalytic activity of HC and NOx conversion over Pd-only three-way catalyst[J]. Journal of Hazardous Materials, 2014, 279:226-235. [56] GUO J, GONG M, YUAN S, et al. Effect of BaO on catalytic activity of Pt-Rh TWC[J]. Journal of Rare Earths, 2006, 24(5):554-559. [57] ZHANG Y H, ZHANG H L, CAO Y, et al. Promotional effect of cobalt addition on catalytic performance of Ce0.5Zr0.5O2 mixed oxide for diesel soot combustion[J]. Chemical Papers, 2016, 70(10):1370-1379. [58] LIANG H, WU S, HONG Y, et al. Influence of alkali metals with different ionic radius doping into Ce0.7Zr0.3O2 on the active oxygen[J]. Catalysis Letters, 2014, 144(4):685-690. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[7] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[8] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[15] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |