Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2694-2703.DOI: 10.16085/j.issn.1000-6613.2017-1714
Previous Articles Next Articles
REN Jin1, LIANG Liang2, ZHANG Yaping1, WU Jiazhong1, YU Jingmou1
Received:
2017-08-15
Revised:
2017-11-20
Online:
2018-07-05
Published:
2018-07-05
任锦1, 梁良2, 张亚平1, 吴家忠1, 余敬谋1
通讯作者:
余敬谋,教授,研究方向为药物递送系统的构建与评价。
作者简介:
任锦(1986-),女,博士研究生,讲师,研究方向为药物载体材料的研发。E-mail:yanjiushengrj@126.com
基金资助:
CLC Number:
REN Jin, LIANG Liang, ZHANG Yaping, WU Jiazhong, YU Jingmou. Progress in controllable synthesis and functionalization of layered double hydroxides[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2694-2703.
任锦, 梁良, 张亚平, 吴家忠, 余敬谋. 层状双氢氧化物的可控合成及功能化研究进展[J]. 化工进展, 2018, 37(07): 2694-2703.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1714
[1] 孙金陆,甄卫军,李进. LDHs材料的结构、性质及其应用研究进展[J].化工进展, 2013, 32(3):610-616. SUN J L, ZHEN W J, LI J. Structure, properties and applications of LDHs[J]. Chemical Industry and Engineering Progress, 2013, 32(3):610-616. [2] ALLOU N B, SAIKIA P, BORAH A, et al. Hybrid nanocomposites of layered double hydroxides:an update of their biological applications and future prospects[J]. Colloid Polym. Sci., 2017, 295(5):1-23. [3] PREVOT V, CAPERAA N, TAVIOTGUEHO C, et al. Glycine-assisted hydrothermal synthesis of NiAl-layered double hydroxide nanostructures[J]. Cryst. Growth Des., 2009, 9(8):3403-3409. [4] AUDREY F, LIANNA D, LIANG H, et al. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations[J]. Nano Lett., 2015, 15(5):3403-3409. [5] TIAN D Y, LIU Z L, LI S P, et al. Facile synthesis of methotrexate intercalated layered double hydroxides:particle control, structure and bioassay explore[J]. Mater. Sci. Eng. C:Mater., 2014, 45:297-305. [6] KURODA Y, MIYAMOTO Y, HIBINO M, et al. Tripodal ligand-stabilized layered double hydroxide nanoparticles with highly exchangeable CO32-[J]. Chem. Mater., 2013, 25(11):2291-2296. [7] TOKUDOME Y, MORIMOTO T, TARUTANI N, et al. Layered double hydroxide nanoclusters:aqueous, concentrated, stable, and catalytically active colloids toward green chemistry[J]. ACS Nano, 2016, 10(5):5550-5559. [8] LAYRAC G, DESTARAC M, GERARDIN C, et al. Highly stable layered double hydroxide colloids:a direct aqueous synthesis route from hybrid polyion complex micelles[J]. Langmuir, 2014, 30(32):9663-9671. [9] HU H, XIU K M, XU S L, et al. Functionalized layered double hydroxide nanoparticles conjugated with disulfide-linked polycation brushes for advanced gene delivery[J]. Bioconjugate Chem., 2013, 24(6):968-978. [10] PAVLOVIC M, ROUSTER P, ONCSIK T, et al. Tuning colloidal stability of layered double hydroxides:from monovalent ions to polyelectrolytes[J]. ChemPlusChem, 2017, 82(1):121-131. [11] EVANS D F, WENNERSTROM H. The colloidal domain:where physics, chemistry, biology, and technology meet[M]. New York:VCH Publishers, Wiley-VCH, 1999. [12] PAVLOVIC M, LI L, DITS F, et al. Aggregation of layered double hydroxide nanoparticles in the presence of heparin:towards highly stable delivery systems[J]. RSC Adv., 2016, 6(20):16159-16167. [13] GU Z, ZUO H, LI L, et al. Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake[J]. J. Mater. Chem. B, 2015, 3(16):3331-3339. [14] WANG X, SUN D, LIU S, et al. The effect of block copolymer EPE1100 on the colloidal stability of Mg-Al LDH dispersions[J]. J. Colloid Inter. Sci., 2005, 289(2):410-418. [15] MURATH S, SOMOSI Z, TOTH I Y, et al. Delaminating and restacking MgAl-layered double hydroxide monitored and characterized by a range of instrumental methods[J]. J. Mol. Struct., 2017, 1140:77-82. [16] MAO N,ZHOU C H,TONG D S,et al.Exfoliation of layered double hydroxide solids into functional nanosheets[J]. Appl. Clay Sci., 2017, 144:60-78. [17] LI D, XU X, XU J,et al.Poly (ethylene glycol) haired layered double hydroxides as biocompatible nanovehicles:morphology and dispersity study[J]. Colloid Surface A, 2011, 384(1/2/3):585-591. [18] DONG A J, LI X, WANG W W, et al. Layered double hydroxide modified by PEGylated hyaluronic acid as a hybrid nanocarrier for targeted drug delivery[J]. Transactions of Tianjin University, 2016, 22(3):237-246. [19] WEI J, LIU A, CHEN L, et al. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride[J]. Macromol. Biosci., 2009, 9(7):631-638. [20] 夏志勇,杜娜,刘建强,等.聚乙二醇和叶酸对层状双金属氢氧化物颗粒的表面修饰[J].高等学校化学学报, 2013, 34(3):596-600. XIA Z Y, DU N, LIU J Q, et al. Surface modification of layer double hydroxide particles bypoly(ethylene glycol) and folic Acid[J]. Chemical Journal of Chinese Universities, 2013, 34(3):596-600. [21] SHU Y, YIN P, LIANG B, et al. Bioinspired design and assembly of layered double hydroxide/poly(vinyl alcohol) film with high mechanical performance[J]. ACS Appl. Mater. Inter., 2014, 6(7):15154-15161. [22] SHAO M, WEI M, EVANS D G, et al. Hierarchical structures based on functionalized magnetic cores and layered double-hydroxide shells:concept, controlled synthesis, and applications[J]. Chem., 2013, 19(13):4100-4108. [23] 盘登科,张慧.水滑石型磁性纳米载药粒子的制备及其体外药物释放性能研究[J].化学学报, 2011, 69(13):1545-1552. PAN D K, ZHANG H. Synthesis and drug release behavior of magnetic nanoparticles based on layered double hydroxide for magnetic drug targeting[J]. Acta Chimica Sinica, 2011, 69(13):1545-1552. [24] 赵满,徐洁,侯万国. Fe3O4@(TF-LDHs)纳米复合体的制备及药物缓释性能[J].高等学校化学学报, 2012, 33(7):1572-1578. ZHAO M, XU J, HOU W G. Synthesis and sustained release property of Fe3O4@(TF-LDHs) nanocomposites[J]. Chemical Journal of Chinese Universities, 2012, 33(7):1572-1578. [25] PAN D K, ZHANG H, FAN T, et al. Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release[J]. Chem. Commun., 2011, 47(3):908-910. [26] WU J, DENG A, WEI J, et al. Synthesis and in vitro evaluation of pH-sensitive magnetic nanocomposites as methotrexate delivery system for targeted cancer therapy[J]. Mater. Sci. Eng. C, 2017, 71:132-140. [27] ZHANG X, WANG J, LI R, et al. Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium[J]. Ind. Eng. Chem. Res., 2013, 52(30):10152-10159. [28] LI D, ZHANG Y T, YU M, et al. Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles[J]. Biomaterials, 2013, 34(32):7913-7922. [29] LI L, FENG Y, LI Y, et al. Fe3O4 core/layered double hydroxide shell nanocomposite:versatile magnetic matrix for anionic functional materials[J]. Angewandte Chemie, 2009, 48(32):5888-5892. [30] ZHAO X, LIU S, WANG P, et al. Surfactant-modified flowerlike layered double hydroxide-coated magnetic nanoparticles for preconcentration of phthalate esters from environmental water samples[J]. J. Chromatogr. A, 2015, 1414(3):22-30. [31] CHO S, KWAG J, JEONG S, et al. Highly fluorescent and stable quantum dot-polymer-layered double hydroxide composites[J]. Chem. Mater., 2013, 25(7):1071-1077. [32] SHAO M, NING F, ZHAO Y, et al. Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors[J]. Chem. Mater., 2012, 24(6):1192-1197. [33] GUAN S, LIANG R, LI C, et al. A supramolecular material for dual-modal imaging and targeted cancer therapy[J]. Talanta, 2017, 165:297-303. [34] DONG L E, GOU G J, JIN X Q, et al. Synthesis pretreatment and characterization of a magnetic layered double hydroxides fluorescent probe[J]. Chinese Chem. Lett., 2014, 25(6):923-928. [35] 陈玉凤,罗世地,鲍垚,等.退火对Tb掺杂ZnAl层状双金属氢氧化物的结构和荧光特性的影响[J].南昌大学学报(工科版), 2016, 38(2):103-107. CHEN Y F, LUO S D, BAO Y, et al. Effects of annealing on structure and fluorescence of Tb-doped ZnAl LDHs[J]. Journal of Nanchang University(Engineering & Technology), 2016, 38(2):103-107. [36] SMALENSKAITE A, VIEIRA D E L, SALAK A N, et al. A comparative study of co-precipitation and sol-gel synthetic approaches to fabricate cerium-substituted Mg, Al layered double hydroxides with luminescence properties[J]. Appl. Clay Sci., 2017, 143:175-183. [37] 陈骏飞,孙阳艺,石林,等.镧、铕掺杂类水滑石材料的结构分析与性能研究[J].功能材料, 2011, 42(s4):677-680. CHEN J F, SUN Y Y, SHI L, et al. Structure analysis and performance research of La, Eu-doped LDHs materials[J]. Journal of Functional Materials, 2011, 42(s4):677-680. [38] SUN J, FAN H, WANG N, et al. Fluorescent vancomycin and terephthalate comodified europium-doped layered double hydroxides nanoparticles:synthesis and application for bacteria labelling[J]. J. Nanopart. Res., 2014, 16(9):1-8. [39] CHEN Y, ZHOU S, LI F, et al. Photoluminescence of Eu-doped ZnAl-LDH depending on phase transitions caused by annealing temperatures[J]. J. Lumin., 2011, 131(4):701-704. [40] CHEN Y, LI F, YU G, et al. Eu-doped Mg-Al layered double hydroxide as a responsive fluorescent material and its interaction with glutamic acid[J]. Spectrochim. Acta A, 2012, 96(10):1005-1011. [41] LIANG R, TIAN R, SHI W, et al. CdTe quantum dots/layered double hydroxide ultrathin films with multicolor light emission via layer-by-layer assembly[J]. Adv. Funct. Mater., 2012, 22(23):4940-4948. [42] JIN X Q, MIN Z, GOU G J, et al. Synthesis and cell imaging of a near-infrared fluorescent magnetic " CdHgTe-dextran-magnetic layered double hydroxide-fluorouracil " composite[J]. J. Pharm. Sci. -US, 2016, 105(5):1751-1761. [43] MORAIS A F, IGN S, SREE S P, et al. Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots[J]. Chem. Commun., 2017, 53:7341-7344. [44] SERRANO I C, STOICA G, PALOMARES E. Increasing cell viability using Cd-free-InP/ZnS@silica@layered double hydroxidematerials for biological labeling[J]. RSC Adv., 2016, 6(37):31210-31213. [45] ZHANG M, YAO Q, LU C, et al. Layered double hydroxide-carbon dot composite:high-performance adsorbent for removal of anionic organic dye[J]. ACS Appl. Mater. Inter., 2014, 6(22):20225-20233. [46] WEI M, LIU W, XU S, et al. In situ synthesis of nitrogen-doped carbon dots in interlayer region of layered double hydroxide with tunable quantum yield[J]. J. Mater. Chem. C, 2017, 5:3536-3541. [47] YAO Q, WANG S, SHI W Y, et al. Graphene quantum dots in two dimensional confined and hydrophobic space for enhanced adsorption of nonionic organic adsorbates[J]. Ind. Eng. Chem. Res., 2017, 56(2):583-590. [48] BAO H, YANG J, HUANG Y, et al. Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery[J]. Nanoscale, 2011, 3(10):4069-4073. [49] HARRISON R, LI L, ZI G, et al. Controlling mesoporous silica-coating of layered double hydroxide nanoparticles for drug control release[J]. Micropor. Mesopor. Mat., 2016, 238:97-104. [50] LI L, GU Z, GU W, et al. Efficient drug delivery using SiO2-layered double hydroxide nanocomposites[J]. J. Colloid Inter. Sci., 2016, 470:47-55. [51] YILMAZ M S. Synthesis of novel amine modified hollow mesoporous silica@Mg-Al layered double hydroxide composite and its application in CO2, adsorption[J]. Micropor. Mesopor. Mat., 2017, 245:109-117. [52] YANG D, SONG S, ZOU Y, et al. Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution[J]. Chem. Eng. J., 2017, 323:143-152. [53] DAUD M, KAMAL M S, SHEHZAD F, et al. Graphene/layered double hydroxides nanocomposites:a review of recent progress in synthesis and applications[J]. Carbon, 2016, 104:241-252. [54] XU J, GAI S, HE F, et al. A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite:fabrication and high supercapacitor performance[J]. J. Mater. Chem. A, 2013, 2(4):1022-1031. [55] 胡光武,李曦,张超灿.石墨烯基复合电极在非对称超级电容器中的研究进展[J].化工进展, 2017, 36(8):2978-2985. HU G W, LI X, ZHANG C C. Research progress of graphene-based composite electrodes in asymmetric supercapacitors[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2978-2985. [56] CAO Y, LI G, LI X. Graphene/layered double hydroxide nanocomposite:properties, synthesis, and applications[J]. Chem. Eng. J., 2016, 292:207-223. [57] WANG H F, TANG C, ZHANG Q. Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts[J]. J. Mater. Chem. A, 2015, 3:16183-16189. [58] HUANG G, CHEN S, SONG P, et al. Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites[J]. Appl. Clay Sci., 2014, 88/89(3):78-85. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[5] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[6] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[7] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[8] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[11] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[14] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[15] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |