[1] 李俊华,陈建军,郝吉明. 控制大气污染化工技术的研究进展[J]. 化工进展,2005,24(7):703-709. LI Junhua,CHEN Jianjun,HAO Jiming. Recent progress of air pollution control technology[J]. Chemical Industry and Engineering Progress,2005,24(7):703-709.
[2] 方选政,张兴惠,张兴芳. 吸附-光催化法用于降解室内VOC的研究进展[J]. 化工进展,2016,35(7):2215-2221. FANG Xuanzheng,ZHANG Xinghui,ZHANG Xingfang. Research progress on degradation of indoor VOC by using adsorption-photocatalytic method[J]. Chemical Industry and Engineering Progress,2016,35(7):2215-2221.
[3] 赵磊,王筱喃,王新,等. 石化VOC废气深度净化技术开发及工业应用[J]. 环境工程,2016,34(s1):569-571. ZHAO Lei,WANG Xiaonan,WANG Xin,et al. The development and industrial application of deep purification technology of petrochemical VOC emissions[J]. Environmental Engineering,2016,34(s1):569-571.
[4] Zhao S,Yi H,Tang X,et al. Methyl mercaptan removal from gas streams using metal-modified activated carbon[J]. Journal of Cleaner Production,2015,87(1):856-861.
[5] KIM D J,LEE H I,YIE J E,et al. Ordered mesoporous carbons:Implication of surface chemistry,pore structure and adsorption of methyl mercaptan[J]. Carbon,2005,43(9):1868-1873.
[6] Laosiripojana N,Assabumrungrat S. Conversion of poisonous methanethiol to hydrogen-rich gas by chemisorption/reforming over nano-scale CeO2:the use of CeO2,as catalyst coating material[J]. Applied Catalysis B:Environmental,2011,102(1/2):267-275.
[7] Whelan M E,Min D H,Rhew R C. Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere[J]. Atmospheric Environment,2013,73(6):131-137.
[8] BrUhl C,Lelieveld J,Crutzen P J,et al. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate[J]. Atmospheric Chemistry & Physics Discussions,2012,11(7):1239-1253.
[9] Wu T,Wang X M,Li D J,et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Journal of Environmental Sciences,2010,44(39):5065-5071.
[10] 李珊红,李彩亭,谭娅,等. 恶臭气体的治理技术及其进展[J]. 四川环境,2005,24(4):45-49. LI Shanhong,LI Caiting,TAN Ya,et al. Technologies of offensive gas treatment and their new development[J]. Sichuan Environment,2005,24(4):45-49.
[11] 王亚恩,易红宏,唐晓龙,等. 甲硫醇气体治理方法的研究进展[J]. 现代化工,2016,36(6):37-41. WANG Ya'en,YI Honghong,TANG Xiaolong,et al. Research progress of treatment methods for methyl mercaptan[J]. Modern Chemical Industry,2016,36(6):37-41.
[12] Caceres M,Morales M,Martiín R S,et al. Oxidation of volatile reduced sulphur compounds in biotrickling filter inoculated with Thiobacillus thioparus[J]. Electronic Journal of Biotechnology,2010,13(5):292-300.
[13] 龚娟,焦以飞,苏庆泉,等. 沼气中甲硫醇的两段深度脱除法[J]. 现代化工,2013,33(11):97-100. GONG Juan,JIAO Yifei,SU Qingquan,et al. A two-stage method for deep removal of methyl mercaptan in biogas[J]. Modern Chemical Industry,2013,33(11):97-100.
[14] 叶杰旭,诸葛蕾,蔡武,等. 甲硫醇降解菌群筛选及其降解特性研究[J]. 环境科学学报,2017,37(7):2572-2578. YE Jiexu,ZHU Gelei,CAI Wu,et al. Enrichment of a methanthiol-degradation mixed microbial consortium and its degradation characteristics[J]. Acta Scientiae Circumstantiae,2017,37(7):2572-2578.
[15] He D D,Chen D K,Hao H S,et al. Enhanced activity and stability of Sm-doped HZSM-5 zeolite catalysts for catalytic methyl mercaptan (CH3SH) decomposition[J]. Chemical Engineering Journal,2017,317:60-69.
[16] He D D,Hao H S,Chen D K,et al. Rapid synthesis of nano-scale CeO2 by microwave-assisted sol-gel method and its application for CH3SH catalytic decomposition[J]. Journal of Environmental Chemical Engineering,2016,4(1):311-318.
[17] He D D,Wan G P,Hao H S,et al. Microwave-assisted rapid synthesis of CeO2 nanoparticles and its desulfurization processes for CH3SH catalytic decomposition[J]. Chemical Engineering Journal,2016,289:161-169.
[18] He D D,Hao H S,Chen D K,et al. Synthesis and application of rare-earth elements (Gd,Sm,and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catalysis Today,2017,281:559-565.
[19] Mukoyama T,Shimoda N,Satokawa S. Catalytic decomposition of methanethiol to hydrogen sulfide over TiO2[J]. Fuel Processing Technology,2015,131:117-124.
[20] Hulea V,Huguet E,Cammarano C,et al. Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts:a comparative study[J]. Applied Catalysis B:Environmental,2014,144(2):547-553.
[21] Huguet E,Coq B,Durand R,et al. A highly efficient process for transforming methyl mercaptan into hydrocarbons and H2S on solid acid catalysts[J]. Applied Catalysis B:Environmental,2013,134/135(17):344-348.
[22] He D D,Hao H S,Chen D K,et al. Effects of rare-earth (Nd,Er and Y) doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan (CH3SH) decomposition[J]. Applied Catalysis A:General,2017,533:66-74.
[23] YU J,HE D D,CHEN D K,et al. Investigating the effects of alkali metal Na addition on catalytic activity of HZSM-5 for methyl mercaptan elimination[J]. Applied Surface Science,2017,420:21-27.
[24] 郝湖生,何德东,陆继长,等. 铈改性对HZSM-5分子筛表面性质及其催化降解甲硫醇(CH3SH)的研究[J]. 中国稀土学报,2016,34(3):265-272. HAO Husheng,HE Dedong,LU Jichang,et al. Study on the surface properties of HZSM-5 zeolite modified by cerium and its catalytic degradation of methyl mercaptan (CH3SH)[J]. Journal of the Chinese Society of Rareearths,2016,34(3):265-272.
[25] Cheng Y,Miao C,Hua W,et al. Cr/ZSM-5 for ethane dehydrogenation:enhanced catalytic activity through surface silanol[J]. Applied Catalysis A:General,2017,532:111-119.
[26] Su J,Liu Y,Yao W,et al. Catalytic combustion of dichloromethane over HZSM-5-supported typical transition metal (Cr,Fe,and Cu) oxide catalysts:a stability study[J]. The Journal of Physical Chemistry,2016,120:18046-18054.
[27] Ayari F,Mhamdi M,Ruiz A R G,et al. Cr-ZSM-5 catalysts for ethylene ammoxidation:Effects of precursor nature and Cr/Al molar ratio on the physicochemical and catalytic properties[J]. Microporous & Mesoporous Materials,2013,171(1/2):166-178.
[28] Rahimi N,Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:a review[J]. Applied Catalysis A:General,2011,398(1/2):1-17.
[29] CHENG Y T,JAE J,SHI J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie,2012,124:1416-1419.
[30] Vishwanathan V,Jun K W,Kim J W,et al. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Applied Catalysis A:General,2004,276(1/2):251-255.
[31] Zhang X,Lin L,Zhang T,et al. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts[J]. Chemical Engineering Journal,2016,284:934-941.
[32] Zhang L,Han C,Hua W,et al. One-step synthesis of mesoporous nanosized sulfated zirconia via liquid-crystal template (LCT) method[J]. Materials Research Bulletin,2012,47(11):3931-3936.
[33] Sang X,Zhang L,Wang H,et al. Influence of synthetic parameters on structural and catalytic properties of sulfated zirconia nanoparticles prepared by employing sulfate-containing anion surfactants via one-step route[J]. Powder Technology,2014,253(2):590-595.
[34] 成源海,张红漫,胡耀池,等. 焙烧温度对镧改性HZSM-5表面性质及乙醇脱水制乙烯反应性能的影响[J]. 中国稀土学报,2010,28(3):330-334. CHEN Yuanhai,ZHANG Hongman,HU Yaochi,et al. Effect of calcination temperature on surface properties and catalytic performance in dehydration ethanol to ethylene of La-modified HZSM-5[J]. Journal of the Chinese Rare Earth Society,2010,28(3):330-334.
[35] Yang P,Xue X,Meng Z,et al. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds[J]. Chemical Engineering Journal,2013,234(12):203-210.
[36] Satoh K,Sawada G,Shiozawa K. Catalytic cracking of n-butane over rare earth-loaded HZSM-5 catalysts[J]. Studies in Surfaceence & Catalysis,1999,125(99):449-456.
[37] Zapata P M C,Parentis M L,Gonzo E E,et al. Acid sites development on Cr3+/SiO2 catalysts obtained by the sol-gel method and hydrothermal treatment:effect of calcination temperature[J]. Applied Catalysis A:General,2013,457(4):26-33.
[38] Botavina M,Agafonov Y,Gaidai N,et al. Towards efficient catalysts for the oxidative dehydrogenation of propane in the presence of CO2:Cr/SiO2 systems prepared by direct hydrothermal synthesis[J]. Catalysis Science & Technology,2016,6(3):840-850.
[39] Davydov L,Reddy E P,France P,et al. Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light[J]. Journal of Catalysis,2001,203(1):157-167.
[40] Pradier C M,Rodrigues F,Marcus P,et al. Supported chromia catalysts for oxidation of organic compounds:the state of chromia phase and catalytic performance[J]. Applied Catalysis B:Environmental,2000,27(2):73-85.
[41] Suga S,Imada S,Muro T,et al. La 4d and Mn core absorption magnetic circular dichroism,XPS and inverse photoemission spectroscopy of La1-xSrx MnO3[J]. Journal of Electron Spectroscopy & Related Phenomena,1996,78:283-286.
[42] Kumar B V,Velchuri R,Devi V R,et al. Preparation,characterization,magnetic susceptibility (Eu,Gd and Sm) and XPS studies of Ln2ZrTiO7 (Ln=La,Eu,Dy and Gd)[J]. Journal of Solid State Chemistry,2010,184(2):264-272.
[43] SU J,YAO W Y,LIU Y,et al. The impact of CrOx loading on reaction behaviors of dichloromethane (DCM) catalytic combustion over Cr-O/HZSM-5 catalysts[J]. Applied Surface Science,2017,396:1026-1033. |