Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (02): 714-723.DOI: 10.16085/j.issn.1000-6613.2017-0843
Previous Articles Next Articles
LI Bin, ZHANG Baohua, NING Ping, HE Liwei, ZUO Xiaolin
Received:
2017-05-09
Revised:
2017-07-10
Online:
2018-02-05
Published:
2018-02-05
李彬, 张宝华, 宁平, 何力为, 左晓琳
通讯作者:
李彬(1979-),男,博士,副教授,研究方向为固废资源化技术。
作者简介:
李彬(1979-),男,博士,副教授,研究方向为固废资源化技术。E-mail:975710484@qq.com。
基金资助:
CLC Number:
LI Bin, ZHANG Baohua, NING Ping, HE Liwei, ZUO Xiaolin. Present status and prospect of red mud resource utilization and safety treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(02): 714-723.
李彬, 张宝华, 宁平, 何力为, 左晓琳. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(02): 714-723.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0843
[1] LIU W, CHEN X, LI W, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84(1):606-610. [2] 吴素彬,聂登攀,王振杰,等. 逆流浸取法回收赤泥中的碱[J]. 化工进展, 2014, 33(6):1607-1609. WU S B, NIE D P, WANG Z J, et al.Recycling alkali from red mud by counter current leaching[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1607-1609. [3] LIU D Y, WU C S. Stockpiling and comprehensive utilization of red mud research progress[J]. Materials, 2012, 5(7):1232-1246. [4] MAYES W M, JARVIS A P, BURKE I T, et al. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue(red mud) depository failure, Hungary[J]. Environmental Science & Technology, 2011, 45(12):5147-5155. [5] 刘少名. 赤泥的综合利用[D]. 沈阳:东北大学, 2011. LIU S M. Comprehensive utilization of red mud[D]. Shenyang:Northeastern University, 2011. [6] 王强,翁雪鹤,潘登,等. 我国铝产业"十二五"总结暨"十三五"展望[J]. 冶金经济与管理, 2016(3):17-19. WANG Q, WANG X H, PAN D, et al. China's aluminum industry in the summary of "12th Five-Year" Plan and the prospect of "13th Five-Year" Plan[J]. Metallurgical Economics and Management, 2016(3):17-19 [7] PARAMGURU R K, RATH P C, MISRA V N. Trends in red mud utilization——a review[J]. Mineral Processing & Extractive Metallurgy Review, 2004, 26(1):1-29. [8] SAMAL S, RAY A K, BANDOPADHYAY A. Proposal for resources, utilization and processes of red mud in India——a review[J]. International Journal of Mineral Processing, 2013, 118(1):43-55. [9] 南相莉,张廷安,刘燕,等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10(s1):264-270. NAN X L, ZHANG T A, LIU Y, et al. Analysis of comprehensive utilization of red mud in China[J]. Chinese Journal of Process Engineering, 2010, 10:264-270. [10] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials, 2017, 335:84-91. [11] SNARS K, GILKES R J. Evaluation of bauxite residues(red muds) of different origins for environmental applications[J]. Applied Clay Science, 2009, 46(1):13-20. [12] SMIRNOV D I, MOLCHANOVA T V. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production[J]. Hydrometallurgy, 1997, 45(3):249-259. [13] 燕昭利,曹建亮,王燕,等. 拜耳法赤泥的催化应用研究现状分析[J]. 材料导报, 2013, 27(21):101-105. YAN Z L, CAO J L, WANG Y, et al. The overview of bayer process red mud for catalytic applications[J]. Materials Review, 2013, 27(21):101-105. [14] 环境保护部办公厅. 关于征求《危险废物排除管理清单(征求意见稿)》意见的函[EB/OL]. http://www.zhb.gov.cn/gkml/hbb/bgth/201703/t20170324_408763.htm. [15] 朱晓波,李望,管学茂,等. 拜耳法赤泥脱碱研究现状[J]. 硅酸盐通报, 2014(9):2254-2257. ZHU X B, LI W, GUAN X M, et al. Research status on dealkalization of the red mud by bayer process[J]. Bulletin of the Chinese Ceramic Society, 2014(9):2254-2257. [16] 李建伟. 烧结法赤泥脱碱及碱回收工艺研究[D]. 郑州:郑州大学, 2012. LI J W. Study on alkali recovery and alkali removal of red mud by sintering process[D]. Zhengzhou:Zhengzhou University, 2012. [17] 路晓涛,张志斌,郑洁,等. 国内赤泥脱碱工艺的研究进展[J]. 铝镁通讯, 2016(4):1-5. LU X T, ZHANG Z B,ZHENG J, et al. Research progress of alkali removal of red mud in China[J]. News Report about Aluminum and Magnesium, 2016(4):1-5. [18] 朱晓波,李望,管学茂. 赤泥水浸脱碱实验及动力学研究[J]. 无机盐工业, 2016, 48(1):41-43. ZHU X B, LI W, GUAN X M. Experiment and kinetics of dealkalization with water leaching from red mud[J]. Inorganic Chemicals Industry, 2016, 48(1):41-43. [19] LUO M, QI X, ZHANG Y, et al. Study on dealkalization and settling performance of red mud[J]. Environmental Science & Pollution Research, 2017, 24(2):1794-1802. [20] LI R, ZHANG T, LIU Y, et al. Calcification-carbonation method for red mud processing[J]. Journal of Hazardous Materials, 2016, 316:94-101. [21] WANG S, ANG H M, TADE M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes.[J]. Chemosphere, 2008, 72(11):1621-1635. [22] KUMAR S, KUMAR R, BANDOPADHYAY A. Innovative methodologies for the utilization of wastes from metallurgical and allied industries[J]. Resources Conservation & Recycling, 2006, 48(4):301-314. [23] LIU Y, NAIDU R. Hidden values in bauxite residue(red mud):recovery of metals.[J]. Waste Management, 2014, 34(12):2662-2673. [24] HAMMOND K, MISHRA B, APELIAN D, et al. CR3 communication:red mud-a resource or a waste?[J]. JOM, 2013, 65(3):340-341. [25] XIANG Q F, LIANG X H, SCHLESINGER M E, et al. Low-temperature reduction of ferric iron in red mud[C]//Anjire, JL.130th TMS Annual Meeting. New Orleans, LA. Symp. Light Metals:Minerals, Metals & Materials Soc., 2001:157-162. [26] LI Y, WANG J, WANG X, et al. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation[J]. Physica C:Superconductivity and its Applications, 2011, 471(3):91-96. [27] ZHU D Q, CHUN T J, PAN J, et al. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt[J]. Journal of Iron and Steel Research, International, 2012, 19(8):1-5. [28] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud:recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18. [29] KASLIWAL P, SAI P S T. Enrichment of titanium dioxide in red mud:a kinetic study[J]. Hydrometallurgy, 1999, 53(1):73-87. [30] 姜平国,王鸿振. 从赤泥中浸出钛的研究[J]. 中国有色冶金, 2008(2):52-54. JIANG P G, WANG H Z. Study on titanium recovery from red mud[J]. China Nonferrous Metallurgy, 2008(2):52-54. [31] 房辉, 郭年祥. 氧化铝固体废渣——赤泥的回收利用现状[J]. 中国资源综合利用, 2011, 29(9):21-24. FANG H, GUO N X. The current situation of recovery and utilization of red mud from alumina solid waste[J]. China Resources Comprehensive Utilization, 2011, 29(9):21-24. [32] WANG W, PRANOLO Y, CHU Y C. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation & Purification Technology, 2013, 108(16):96-102. [33] OCHSENKÜHN-PETROPULU M, LYBEROPULU Th, PARSSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta, 1995, 315(1):231-237. [34] BHATNAGAR A, VILAR V J, BOTELHO C M, et al. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater[J]. Environmental Technology, 2011, 32(3):231-249. [35] PRADHAN J, DAS J, DAS S, et al. Adsorption of phosphate from aqueous solution using activated red mud[J]. Journal of Colloid & Interface Science, 1998, 204(1):169-172. [36] LIU Y, NAIDU R, MING H. Red mud as an amendment for pollutants in solid and liquid phases[J]. Geoderma, 2011, 163(1/2):1-12. [37] ZHAO Y, ZHANG L Y, NI F, et al. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal[J]. Desalination, 2011, 273(2):414-420. [38] LIANG W, COUPERTHWAITE S J, KAUR G, et al. Effect of strong acids on red mud structural and fluoride adsorption properties[J]. Journal of Colloid & Interface Science, 2014, 423(3):158-165. [39] CENGELOGLU Y, TOR A, ERSOZ M, et al. Removal of nitrate from aqueous solution by using red mud[J]. Separation & Purification Technology, 2006, 51(3):374-378. [40] ALTUNDOGAN H S, ALTUNDOGAN S, TÜMEN F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management, 2002, 22(3):357-363. [41] NADAROGLU H, KALKAN E, DEMIR N. Removal of copper from aqueous solution using red mud[J]. Desalination, 2010, 251(1/3):90-95. [42] RUBINOS D A, BARRAL M T. Use of red mud(bauxite residue) for the retention of aqueous inorganic mercury(Ⅱ)[J]. Environmental Science and Pollution Research, 2015, 22(22):17550-17568. [43] CUI Y W, LI J, DU Z F, et al. Cr(Ⅵ) Adsorption on red mud modified by lanthanum:performance, kinetics and mechanisms[J]. PLoS One, 2016, 11(9):e0161780. [44] ZHY C, LUAN Z, WANG Y, et al. Removal of cadmium from aqueous solutions by adsorption on granular red mud(GRM)[J]. Separation & Purification Technology, 2007, 57(1):161-169. [45] ZHANG L, ZHANG H, GUO W, et al. Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud[J]. Applied Clay Science, 2014, 93/94(5):85-93. [46] SAPUTRA E, MUHAMMAD S, SUN H, et al. Red mud and fly ash supported Co catalysts for phenol oxidation[J]. Catalysis Today, 2012, 190(1):68-72. [47] KUMAR R, SRIVASTAVA J P, PREMCHAND. Utilization of iron values of red mud for metallurgical applications[M]. Environmental and Waste Management, 1998:108-119. [48] SAHU R C,PATEL R,RAY B C. Removal of hydrogen sulfide using red mud at ambient conditions[J]. Fuel Processing Technology, 2011, 92(8):1587-1592. [49] JONES G, JOSHI G, CLARK M, et al. Carbon capture and the aluminium industry:preliminary studies[J]. Environmental Chemistry, 2006, 3(4):297-303. [50] SAHU R C, PATAL R, RAY B C. Adsorption of Zn(Ⅱ) on activated red mud:neutralized by CO2[J]. Desalination, 2011, 266(1/3):93-97. [51] ORDÓÑEZ S. Catalytic applications of red mud, an aluminum industry waste:a review[J]. Applied Catalysis B:Environmental, 2008, 81(1/2):64-77. [52] HU Z P, ZHU Y P, GAO Z M, et al. CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation[J]. Chemical Engineering Journal, 2016, 302:23-32. [53] LIU X, ZHANG N. Utilization of red mud in cement production:a review[J]. Waste Management & Research, 2011, 29(10):1053-1063. [54] LIU R X, POON C S. Effects of red mud on properties of self-compacting mortar[J]. Journal of Cleaner Production, 2016, 135:1170-1178. [55] HE H, YUE Q, YUAN S, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud[J]. Journal of Hazardous Materials, 2012, s 203/204(4):53-61. [56] SUMMERS R N, GUISE N R, SMIRK D D. Bauxite residue(red mud) increases phosphorus retention in sandy soil catchments in Western Australia[J]. Nutrient Cycling in Agroecosystems, 1993, 34(1):85-94. [57] SUMMERS R N, PECH J D. Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia.[J]. Agriculture Ecosystems & Environment, 1997, 64(3):219-232. [58] LOMBI E, ZHAO F J, WIESHAMMER G, et al. In situ fixation of metals in soils using bauxite residue:biological effects[J]. Environmental Pollution, 2002, 118(3):445-452. [59] GARAU G, SILVETTI M, DEIANA S, et al. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil.[J]. Journal of Hazardous Materials, 2011, 185(2/3):1241-1248. [60] UYSAL B Z, AKSAHIN I, YUCEL H. Sorption of SO2 on metal oxides in a fluidized bed[J]. Industrial & Engineering Chemistry Research, 1988, 27(3):49-57. [61] LAND G W. Trials of additives for sulfur dioxide removal in industrial plants[J]. Combustion, 1969(10):30-33. [62] 王学谦. 硫化氢废气的燃烧-吸收法净化研究[D]. 昆明:昆明理工大学, 2001. WANG X Q. Study on the method of combustion-aborption in dealing with waste gas including hydrogen sulfide[D]. Kunming:Kunming University of Science and Technology, 2001. [63] OLDAKER E C, POSTON A M, FARRIOR W L. Removal of hydrogen sulfide from hot low-Btu gas with iron oxide-fly ash sorbents.[HS removed from gas at 1100℉; 90-95 percent of HS removed] [R]. Morgantown:Morgantown Energy Technology Center, 1975. [64] 邢同春. 关于干式氢氧化铁脱硫的分析[J]. 煤气与热力, 1990, 10(6):18-19. XING T C.Analysis on dry desulfurization of ferric hydroxide[J]. Gas and Heat, 1990, 10(6):18-19. [65] WANG X K, ZHANG Y H, LV F Z, et al. Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions[J]. Environmental Progress & Sustainable Energy, 2015, 34(1):81-87. [66] 陈海彩. 2600m3/h烟气脱硫装置设计及脱硝热力学研究[D]. 郑州:郑州大学, 2014. CHEN H C. Design of 2600m3/h flue gas desulfurization device and thermodynamics analysis of denitration[D]. Zhengzhou:Zhengzhou University, 2014. [67] 位朋. 氧化铝赤泥工业烟气脱硫研究[D]. 郑州:郑州大学, 2012. WEI P.Research of industrial flue gas desulfurization by alumina red mud[D]. Zhengzhou:Zhengzhou University, 2012. [68] 杨金姬. 赤泥用于工业烟气脱硫的实验研究[D]. 郑州:郑州大学, 2012. YANG J J. Experimental study of red mud for industrial flue gas desulfurization[D]. Zhengzhou:Zhengzhou University, 2012. [69] 靳苏静. 赤泥与石灰石湿法烟气脱硫的工程运行分析[D]. 郑州:郑州大学, 2013. JIN S J.Engineering operation analysis of red mud and limestone wet flue gas desulfurization[D]. Zhengzhou:Zhengzhou University, 2013. [70] 庞皓. 工业烟气赤泥脱硫中试装置的初步设计及设备选型[D]. 郑州:郑州大学, 2013. PANG H.Preliminary design and type selection of pilot test in industrial flue gas desulfurization by red mud[D]. Zhengzhou:Zhengzhou University, 2013. [71] 杨国俊,于海燕,李威,等. 赤泥脱硫的工程化试验研究[J]. 轻金属, 2010(9):26-29. YANG G J, YU H Y, LI W, et al. Pilot-plant test of sulfur removal by red mud[J]. Light Metals, 2010(9):26-29. [72] 胡学伟,姚琪,李彬,等. 一种利用赤泥处理烟气并回收金属铁、铝的方法:201610430324.8[P]. 2016-09-28. HU X W, YAO Q, LI B, et al. Method of using red mud for treating flue gas and recovering metal iron and aluminum:201610430324.8[P]. 2016-09-28. [73] 张江娟,邓佐国,徐廷华. 赤泥酸浸的试验研究[J]. 轻金属, 2005(2):13-15. ZHANG J J, DENG Z G, XU Y H. Experimental investigation on leaching metals from red mud[J]. Light Metals, 2005(2):13-15. [74] NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction & Building Materials, 2016, 125:905-911. [75] MAN K, ZHU Q, LI L, et al. Preparation and performance of ceramic filter material by recovered silicon dioxide as major leached component from red mud[J]. Ceramics International, 2017,10(43):7565-7572. |
[1] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[2] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[3] | GAO Ningbo, HU Yadi, QUAN Cui. Research progress on thermochemical transformation and biological treatment of food waste [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 507-515. |
[4] | ZHANG Peng, WANG Shaoqing, LI Zhihe, ZHANG Andong, GAO Liang, WAN Zhen, SONG Ning. Preparation and properties of composite adsorbents by co-pyrolysis of red mud and lignin [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 407-414. |
[5] | YU Zhengwei, ZHANG Xiaoxia, LEI Jie, LI Ao, WANG Guangying, DING Xiang, LONG Hongming. Comprehensive recovery of cerium and manganese from waste CeO x -MnO x -based SCR denitrification catalysts by reductive acid leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5122-5131. |
[6] | HAN Xuan, WANG Lihong, BAI Xueyuan, YI Weiming, LI Yongjun, LI Zhihe, ZHANG Andong. Preparation of dealkalized red mud catalysts and its effect on bio-oil composition of corn straw catalytic pyrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4723-4732. |
[7] | HUANG Xia, HE Yingying, ZHANG Yidie, YANG Dianhai, DAI Xiaohu, XIE Li. Research progress on enhancing resource utilization of organic solid waste aerobic composting based on biochar [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4544-4554. |
[8] | CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. |
[9] | WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502. |
[10] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
[11] | NIE Zimeng, YANG Dian, XIONG Yulu, LI Yingjie, TIAN Senlin, NING Ping. Performance and mechanism of electrolytic manganese slag slurry for flue gas desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1063-1072. |
[12] | LIU Ancang, CHEN Chuan, CHEN Jianzhong, CHEN Yuzhong, ZHU Chenliang, JIANG Yong, LU Fushen, WANG Shuangxi, ZHONG Ziyi, SONG Yibing. Application of catalytic reaction for CO2 resource utilization and marine antifouling in coastal power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5145-5155. |
[13] | LIU Qin, ZHOU Xintao, HUANG Jing, LUO Zhongqiu, SHAO Zhoujun, WANG Luxing, WEI Yu, LUO Yunlong. Research statue on adsorption properties and mechanism of heavy metal ions using red mud [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3455-3465. |
[14] | XING Yan, ZHANG Xuekai, ZHOU Kanggen, PENG Changhong. Alkalinity regulation of red mud with recycled CaCl2 [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2909-2916. |
[15] | Yaguang JIANG, Ruikang WANG, Qian WANG, Chunxi LI. Converting carbon tetrachloride to chloroform by using trichloroethene as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1114-1121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |