[1] GUAN C,WANG Z,YU S,et al. Upgrading petroleum residue by two-stage hydrocracking[J]. Fuel Processing Technology,2004,85(2):165-172. [2] PANG W W,KURAMAE M,KINOSHITA Y,et al. Plugging problems observed in severe hydrocracking of vacuum residue[J]. Fuel,2009,88(4):663-669. [3] KUMAR H,FROMENT G F. Mechanistic kinetic modeling of the hydrocracking of complex feedstocks,such as vacuum gas oils[J]. Industrial & Engineering Chemistry Research,2007,46(18):5881-5897. [4] FAHIM M A,AL-SAHHAF T A,ELKILANI A,et al. Fundamentals of Petroleum Refining[M]. Amsterdam:Elsevier,2009. [5] MARTENS G G,MARIN G B. Kinetics for hydrocracking based on structural classes:model development and application[J]. AIChE Journal,2001,47(7):1607-1622. [6] WEEKMAN V W. Model of catalytic cracking conversion in fixed,moving,and fluid-bed reactors[J]. Industrial & Engineering Chemistry Process Design and Development,1968,7(1):90-95. [7] PELLEGRINI L A,GAMBA S,CALEMMA V,et al. Modelling of hydrocracking with vapour–liquid equilibrium[J]. Chemical Engineering Science,2008,63(17):4285-4291. [8] HOU W F,SU H Y,HU Y Y,et al. Lumped kinetics model and its on-line application to commercial catalytic naphtha reforming process[J]. Journal of Chemical Industry and Engineering,2006,57(7):1605-1611. [9] JAFFE S B,FREUND H,OLMSTEAD W N. Extension of structure-oriented lumping to vacuum residua[J]. Industrial & Engineering Chemistry Research,2005,44(26):9840-9852. [10] FROMENT G F. Single event kinetic modeling of complex catalytic processes[J]. Catalysis Reviews,2005,47(1):83-124. [11] QADER S A,HILL G R. Hydrocracking of gas oil[J]. Industrial & Engineering Chemistry Process Design and Development,1969,8(1):98-105. [12] STANGELAND B E. A kinetic model for the prediction of hydrocracker yields[J]. Industrial & Engineering Chemistry Process Design and Development,1974,13(1):71-76. [13] LAXMINARASIMHAN C S,RAMACHANDRAN P. A continuous [14] YUI S M,SANFORD E C. Mild hydrocraeking of bitumen-derivede coker and hydrocracker heavy gas oils:kineties,product yields,andproduct properties[J]. Industrial and Engineering Chemistry Research,1989,28(9):1178-1284. [15] AOYAGI K,MCCAFFREY W C,GRAY M R. Kinetics of hydrocracking and hydrotreating of coker and oilsands gas oils[J]. Petroleum Science and Technology,2003,21(5):997-1015. [16] 喻胜飞,罗武生. 重油加氢裂化四集总反应动力学模型的研究[J]. 石油化工设计,2007,24(1):15-17. [17] SADIGHI S,AHMAD A,RASHIDZADEH M. 4-Lump kinetic model for vacuum gas oil hydrocracker involving hydrogen consumption[J]. Korean Journal of Chemical Engineering,2010,27(4):1099-1108. [18] ZHAO Y X,LI D,LIN X. Lumping kinetics of asphaltene hydrocracking over Ni-Mo/γ-Al[J]. Advanced Materials Research,2012,396:806-810. [19] 朱豫飞,张治和. 加氢裂化反应动力学模型初步探讨[J]. 炼油设计,1990,20(3):18-23. [20] SÁNCHEZ S,RODRÍGUEZ M A,Ancheyta J. Kinetic model for moderate hydrocracking of heavy oils[J]. Industrial & Engineering Chemistry Research,2005,44(25):9409-9413. [21] KUMAR A,SINHA S. Steady state modeling and simulation of hydrocracking reactor[J]. Petroleum & Coal,2012,54(1):59-64. [22] SADIGHI S,AHMAD A. An optimisation approach for increasing the profit of a commercial VGO hydrocracking process[J]. The Canadian Journal of Chemical Engineering,2013,91(6):1077-1091. [23] 郑明方,张素贞. 加氢裂化反应器数学模型的研究[J]. 石油化工自动化,1998 (4):31-34. [24] 李群勇. 加氢裂化反应器的建模和仿真[D]. 厦门:厦门大学,2008. [25] ELKILANI A,FAHIM M. Six-Lump hydrocracking model for maximizing aviation turbine kerosene[J]. Petroleum Science and Technology,2015,33(2):237-244. [26] MASOUDIAN S K,SADIGHI S,ABBASI A,et al. Regeneration of a commercial catalyst for the dehydrogenation of isobutane to isobutene[J]. Chemical Engineering & Technology,2013,36(9):1593-1598. [27] JARULLAH A T,MUJTABA I M,WOOD A S. Kinetic model development and simulation of simultaneous hydrodenitrogenation and hydrodemetallization of crude oil in trickle bed reactor[J]. Fuel,2011,90(6):2165-2181. [28] STANGELAND B E. A kinetic model for the prediction of hydrocracker yields[J]. Industrial & Engineering Chemistry Process Design and Development,1974,13(1):71-76. [29] MOHANTY S,SARAF D N,KUNZRU D. Modeling of a hydrocracking reactor[J]. Fuel Processing Technology,1991,29(1):1-17. [30] 杨朝合,林世雄. 重质油加氢裂化反应动力学的研究[J]. 石油与天然气化工,1998,27(1):19-24. [31] BOTCHWEY C,DALAI A K,ADJAYE J. Product selectivity during hydrotreating and mild hydrocracking of bitumen-derived gas oil[J]. Energy & Fuels,2003,17(5):1372-1381. [32] 卢建翔,周华,师佳,等. 工业加氢裂化反应器模型的建立[J]. 石油学报,2010,26(6):966-971. [33] BHUTANI N,RAY A K,RANGAIAH G P. Modeling,simulation,and multi-objective optimization of an industrial hydrocracking unit[J]. Industrial & Engineering Chemistry Research,2006,45(4):1354-1372. [34] ZHOU H,LU J,CAO Z,et al. Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene[J]. Fuel,2011,90(12):3521-3530. [35] PACHECO M A,DASSORI C G. Hydrocracking:an improved kinetic model and reactor modeling[J]. Chemical Engineering Communications,2002,189(12):1684-1704. [36] LI G,XIA Y,ZENG W. Kinetic mechanism research of an industrial hydrocracker based on strict calculation of stoichiometric coefficients[J]. Fuel,2013,103:285-291. [37] HAN L,FANG X,PENG C,et al. Application of discrete lumped kinetic modeling on vacuum gas oil hydrocracking[J]. China Petroleum Processing and Petro-chemical Technology,2013,15(2):67-73. [38] PURON H,ARCELUS-ARRILLAGA P,CHIN K K,et al. Kinetic analysis of vacuum residue hydrocracking in early reaction stages[J]. Fuel,2014,117:408-414. [39] FUKUYAMA H,TERAI S. Kinetic study on the hydrocracking reaction of vacuum residue using a lumping model[J]. Petroleum Science and Technology,2007,25(1):277-287. [40] MARTÍNEZ J,ANCHEYTA J. Kinetic model for hydrocracking of heavy oil in a CSTR involving short term catalyst deactivation[J]. Fuel,2012,100:193-199. [41] SÁNCHEZ S,RODRÍGUEZ M A,ANCHEYTA J. Kinetic model for moderate hydrocracking of heavy oils[J]. Industrial & Engineering Chemistry Research,2005,44(25):9409-9413. [42] LAXMINARASIMHAN C S,VERMA R P,RAMACHANDRAN P A. Continuous lumping model for simulation of hydrocracking[J]. AIChE Journal,1996,42(9):2645-2653. [43] NARASIMHAN C S L,THYBAUT J W,MARIN G B,et al. Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22[J]. Journal of Catalysis,2003,220(2):399-413. [44] BASAK K,SAU M,MANNA U,et al. Industrial hydrocracker model based on novel continuum lumping approach for optimization in petroleum refinery[J]. Catalysis Today,2004,98(1):253-264. [45] ELIZALDE I,RODRÍGUEZ M A,ANCHEYTA J. Application of continuous kinetic lumping modeling to moderate hydrocracking of heavy oil[J]. Applied Catalysis A:General,2009,365(2):237-242. [46] ELIZALDEI,ANCHEYTA J. On the detailed solution and application of the continuous kinetic lumping modeling to hydrocracking of heavy oils[J]. Fuel,2011,90(12):3542-3550. [47] SILDIR H,ARKUN Y,CAKAL B,et al. A dynamic non-isothermal model for a hydrocracking reactor:model development by the method of continuous lumping and application to an industrial unit[J]. Journal of Process Control,2012,22(10):1956-1965. [48] AREFI A,KHORASNEH F,FARHADI F. Application of a continuous kinetic model for the hydrocracking of vacuum gas oil[J]. Petroleum Science and Technology,2014,32(18):2245-2252. [49] ELIZALDE I,ANCHEYTA J. Modeling catalyst deactivation during hydrocracking of atmospheric residue by using the continuous kinetic lumping model[J]. Fuel Processing Technology,2014,123:114-121. [50] BECKER P J,CELSE B,GUILLAUME D,et al. Hydrotreatment modeling for a variety of VGO feedstocks:a continuous lumping approach[J]. Fuel,2015,139:133-143. |