[1] Koziej D,Lauria A,Niederberger M. 25th Anniversary article:Metal oxide particles in materials science:Addressing all length scales[J]. Adv. Mater.,2014,26(2):235-257. [2] Zhang H Z,Banfield J F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2[J]. Chem. Rev.,2014,114(19):9613-9644. [3] Villanueva-Cab J,Jang S R,Halverson A F,et al. Trap-free transport in ordered and disordered TiO2 nanostructures[J]. Nano Lett.,2014,14(5):2305-2309. [4] Zhou M J,Liu Y C,Chen J,et al. Double-shelled hollow SnO2/Polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage[J]. J. Mater. Chem. A,2015,3(3):1068-1076. [5] Djurisic A B,Leung Y H,Ng A M C. Strategies for improving the efficiency of semiconductor metal oxide photocatalysis[J]. Mater. Horiz.,2014,1(4):400-410. [6] Chen X B,Liu L,Yu P Y,et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science,2011,331(6018):746-750. [7] Lee J S,You K H,Park C B. Highly photoactive,low bandgap TiO2 nanoparticles wrapped by graphene[J]. Adv. Mater.,2012,24(8):1084-1088. [8] Hao Q,Chen L,Xu C X. Facile fabrication of a three-dimensional cross-linking TiO2 nanowire network and its long-term cycling life for lithium storage[J]. ACS Appl. Mater. Interfaces,2014,6(13):10107-10112. [9] Sarkar D,Chattopadhyay K K. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three step electron transfer for enhanced photocatalytic property[J]. ACS Appl. Mater. Interfaces,2014,6(13):10044-10059. [10] Kim H S,Lee J W,Yantara N,et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett.,2013,13(6):2412-2417. [11] Jung Mi H,Ko K C,Lee J Y. Single crystalline-like TiO2 nanotube fabrication with dominant (001) facets using poly(vinylpyrrolidone) for high efficiency solar cells[J]. J. Phys. Chem. C,2014,118(31):17306-17317. [12] Cai J H,Huang Z A,Lü K L,et al. Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity[J]. RSC Adv.,2014,4(38):19588-19593. [13] Tian G H,Chen Y J,Zhou W,et al. 3D hierarchical flower-like TiO2 nanostructure:Morphology control and its photocatalytic property[J]. CrystEngComm,2011,13(8):2994-3000. [14] Shen L F,Zhang X G,Li H G,et al. Design and tailoring of a three-dimensional TiO2-graphene-carbon nanotube nanocomposite for fast lithium storage[J]. J. Phys. Chem. Lett.,2011,2(24):3096-3101. [15] Ye M D,Liu H Y,Lin C J,et al. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates[J]. Small,2013,9(2):312-321. [16] Park K S,Min K M,Jin Y H,et al. Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon[J]. J. Mater. Chem.,2012,22(31):15981-15986. [17] Zhou Y,Wu H Y,Zhong X,et al. Effects of non-polar solvent on the morphology and property of three-dimensional hierarchical TiO2 nanostructures by one-step solvothermal route[J]. J. Nanopart. Res.,2014,16:2466. [18] Park S G,Jeon T Y,Yang S M. Fabrication of three-dimensional nanostructured titania materials by prism holographic lithography and the sol-gel reaction[J]. Langmuir,2013,29(31):9620-9625. [19] 彭卿,李亚栋. 功能纳米材料的化学控制合成、组装、结构与性能[J]. 中国科学(B辑):化学,2009,39(10):1028-1052. [20] Yang Y,Wang G Z,Deng Q,et al. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(Ⅵ) and methyl orange[J]. ACS Appl. Mater. Interfaces,2014,6(4):3008-3015. [21] Wang L,Nie Z Y,Cao C B,et al. Controllable synthesis of porous TiO2 with hierachical nanostructure for efficient photocatalytic hydrogen evolution[J]. J. Mater. Chem A,2015,3(7):3710-3718. [22] Sun Z Q,Kim J H,Zhao Y,et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures[J]. J. Am. Chem. Soc.,2011,133(48):19314-19317. [23] Shih P C,Peng J D,Lee C P,et al. Multifunctional TiO2 microflowers with nanopetals as scattering layer for enhanced quasi-solid-state dye-sensitized solar cell performance[J].ChemElectroChem,2014,1(3):532-535. [24] Chen F J,Zhou G W,Chen H J,et al. Easy synthesis of layered titanate nanosheets with 3D hierarchical flower-like structures[J]. RSC Adv.,2014,4(78):41678-41682. [25] Yu L B,Li Z,Liu Y B,et al. Synthesis of hierarchical TiO2 flower-rod and application in CdSe/CdS co-sensitized solar cell[J]. Journal of Power Sources,2014,270:42-52. [26] Wu W Q,Lei B X,Rao H S,et al. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized dolar cells[J]. Scientific Reports,2013,3:1352. [27] Wu W Q,Xu Y F,Rao H S,et al. Trilayered photoanode of TiO2 nanoparticles on a 1D-3D nanostructured TiO2 grown flexible Ti substrate for high-efficiency(9.1%) dye-sensitized solar cells with unprecedentedly high photocurrent density[J]. J. Phys. Chem. C,2014,118(30):16426-16432. [28] Xin X,Zhou X F,Wu J H,et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano,2012,6(12):11035-11043. [29] Cheng G,Wang Z G,Liu Y L,et al. Magnetic affinity microspheres with meso-/macroporous shells for selective enrichment and fast separation of phosphorylated biomolecules[J]. ACS Appl. Mater. Interfaces,2013,5(8):3182-3190. [30] Bian J C,Huang C,Wang L Y,et al. Carbon dot loading and TiO2 nanorod length dependence of photoelectrochemical properties in carbon dot/TiO2 nanorod array nanocomposites[J]. ACS Appl. Mater. Interfaces,2014,6(7):4883-4890. [31] Sheng X,He D Q,Yang J,et al. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties[J]. Nano Lett.,2014,14(4):1848-1852. [32] Zha C Y,Shen L M,Zhang X Y,et al. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces,2014,6(1):122-129. [33] Han H,Sudhagar P,Song T,et al. Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells[J]. Chem. Commun.,2013,49(27):2810-2812. [34] Mali S S,Kim H,Shim C S,et al. Single-step synthesis of 3D nanostructured TiO2 as a scattering layer for vertically aligned 1D nanorod photoanodes and their dye-sensitized solar cell properties[J]. Cryst. Eng. Comm.,2013,15(28):5660-5667. [35] Panda S K,Yoon Y,Jung H S,et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery[J]. Journal of Power Sources,2012,204:162-167. [36] Fu X X,Wang B B,Ren Z M,et al. Controllable synthesis of TiO2 hierarchical nanostructures and their applications in lithium ion batteries[J]. RSC Adv.,2014,4(81):42772-42778. [37] Lan T B,Liu Y B,Dou J,et al. Hierarchically porous TiO2 microspheres as a high performance anode for lithium-ion batteries[J]. J. Mater. Chem. A,2014,2(4):1102-1106. [38] Wang H Q,Sun L,Wang H,et al. Rutile TiO2 mesocrystallines with aggregated nanorod clusters:Extremely rapid self-reaction of the single source and enhanced dye-sensitized solar cell performance[J]. RSC Adv.,2014,4(102):58615-58623. [39] Liu Y B,Lan T B,Zhang W F,et al. Hierarchically porous anatase TiO2 microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries[J]. J. Mater. Chem. A,2014,2(47):20133-20138. [40] Xin L,Liu Y,Li B J,et al. Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries[J]. Scientific Reports,2014,4:4479. [41] 刘凤艳,肖丽伟,康志成,等. 多孔二氧化钛吸附刚果红[J].化工进展,2014,33(5):1321-1326. [42] Sridharan K,Park T J. Thorn-ball shaped TiO2 nanostructures:Influence of Sn2+ doping on the morphology and enhanced visible light photocatalytic activity[J]. Applied Catalysis B:Environmental,2013,134-135:174-184. [43] Bai H W,Liu Z Y,Liu L,et al. Large-scale production of hierarchical TiO2 nanorod spheres for photocatalytic elimination of contaminants and killing bacteria[J]. Chem. Eur. J.,2013,19(9):3061-3070. [44] Li G L,Chen Q W,Lan J. Facile synthesis,metastable phase induced morphological evolution and crystal ripening,and structure- dependent photocatalytic properties of 3D hierarchical anatase superstructures[J]. ACS Appl. Mater. Interfaces,2014,6(24):22561-22568. |