化工进展 ›› 2021, Vol. 40 ›› Issue (11): 6347-6357.DOI: 10.16085/j.issn.1000-6613.2020-2389

• 资源与环境化工 • 上一篇    下一篇

亲水/疏水复合膜强化膜蒸馏深度处理工业废水的研究进展

任静(), 刘状, 郭淑娟, 李剑锋(), 程芳琴   

  1. 山西大学资源与环境工程研究所,山西省黄河实验室,山西 太原 030006
  • 收稿日期:2020-11-29 修回日期:2021-04-10 出版日期:2021-11-05 发布日期:2021-11-19
  • 通讯作者: 李剑锋
  • 作者简介:任静(1989—),女,博士,讲师,研究方向为抗污染膜制备与废水深度处理。E-mail:renjing@sxu.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFC0408605);山西省应用基础研究计划(201901D211126);山西省高等学校科技创新项目(2020L0017);中央引导地方科技发展专项资金项目(YDZX20191400002539)

Progresses of hydrophilic/hydrophobic composite membranes in membrane distillation for enhanced treatment of industrial wastewater

REN Jing(), LIU Zhuang, GUO Shujuan, LI Jianfeng(), CHENG Fangqin   

  1. Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2020-11-29 Revised:2021-04-10 Online:2021-11-05 Published:2021-11-19
  • Contact: LI Jianfeng

摘要:

工业废水中通常含有多种疏水性有机污染物及表面活性剂,传统疏水微孔膜用于膜蒸馏处理工业废水的过程中,这些污染物容易沉积在膜表面引发膜污染和膜润湿,导致膜蒸馏过程的低效甚至失败。亲水/疏水复合膜是一种表层亲水而底层疏水的非对称膜材料,可通过在膜表面形成水合层减缓污染物的吸附累积,同时保留疏水基底膜对污染物的高截留率,用于膜蒸馏过程可有效强化其处理复杂工业废水的效果。本文概述了构筑亲水/疏水复合膜的仿生学原理与表面润湿理论,介绍了复合膜常用的制备方法,重点分析了多种亲水材料改性制备的复合膜用于膜蒸馏深度处理工业废水的强化效果及强化机制,认为复合膜表面形成的亲水层可有效抑制工业废水中疏水性污染物与膜表面的疏水-疏水相互作用,减轻膜污染及膜润湿倾向,提高污染物截留效率,而氧化石墨烯等亲水物质可加速水分子通过,提升膜蒸馏产水通量。最后指出未来亲水/疏水复合膜的发展可以通过建立污染物在复合膜中的传递模型,进一步探究复合膜对工业废水处理过程的强化机制,通过优化调控复合膜结构,提升复合膜对工业废水中多种污染物的截留率和抗污染性能,实现膜蒸馏抗污染性、截留率和产水通量的同步提升,并通过开展中试研究验证复合膜用于工业废水深度处理的经济性和长期稳定性。

关键词: 膜, 膜蒸馏, 废水, 有机化合物, 界面, 过程强化

Abstract:

Industrial wastewater contains multiple hydrophobic organic pollutants and surfactants. In the process of membrane distillation to treat industrial wastewater, these pollutants are easily deposited on the surface of traditional hydrophobic membrane, causing membrane fouling and wetting, and ultimately leading to the inefficiency or failure of membrane distillation process. Hydrophilic/hydrophobic composite membrane is an asymmetric membrane with hydrophilic surface and hydrophobic substrate, which can relieve the adsorption and accumulation of pollutants by forming a hydration layer on the membrane surface, while retaining high rejection rate of pollutants by the hydrophobic substrate. Thus it can effectively strengthen the treatment of complex industrial wastewater by membrane distillation. In this paper, the bionic principle and surface wetting theory of hydrophilic/hydrophobic composite membrane construction is firstly introduced. Secondly, the preparation of composite membrane is reviewed. Thirdly, the enhancement performance and mechanism of composite membrane made of a variety of hydrophilic materials for the advanced treatment of industrial wastewater are explained. It is believed that the hydrophilic layer formed on the surface of composite membrane can effectively inhibit the hydrophobic-hydrophobic interaction between the hydrophobic pollutants and membrane surface, reducing membrane fouling and wetting tendency, improving the rejection of pollutants. Some hydrophilic substances such as graphene oxide can also accelerate the passage of water molecules and increase membrane flux. Finally, it is pointed out that the future development of hydrophilic/ hydrophobic membrane can be focused on the enhancement mechanism of composite membrane by establishing the transfer model of pollutants during industrial wastewater treatment. Improvement of the rejection and anti-fouling performance of composite membrane to various pollutants in industrial wastewater by optimizing and adjusting the composite membrane structure also should be issued, eventually realizing the simultaneous improvement of membrane fouling resistance, pollutants' rejection and water flux. And pilot test can be implemented to verify the economic and long-term stability of composite membrane in the advanced treatment of industrial wastewater.

Key words: membranes, membrane distillation, wastewater, organic compounds, interface, process enhancement

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn